Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
J Phys Chem B ; 127(8): 1728-1734, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36790863

ABSTRACT

The finding that electronic conductance across ultrathin protein films between metallic electrodes remains nearly constant from room temperature to just a few degrees Kelvin has posed a challenge. We show that a model based on a generalized Landauer formula explains the nearly constant conductance and predicts an Arrhenius-like dependence for low temperatures. A critical aspect of the model is that the relevant activation energy for conductance is either the difference between the HOMO and HOMO-1 or the LUMO+1 and LUMO energies instead of the HOMO-LUMO gap of the proteins. Analysis of experimental data confirms the Arrhenius-like law and allows us to extract the activation energies. We then calculate the energy differences with advanced DFT methods for proteins used in the experiments. Our main result is that the experimental and theoretical activation energies for these three different proteins and three differently prepared solid-state junctions match nearly perfectly, implying the mechanism's validity.

2.
PLoS One ; 17(8): e0273709, 2022.
Article in English | MEDLINE | ID: mdl-36041120

ABSTRACT

The Quadratic Unconstrained Binary Optimization (QUBO) problem is NP-hard. Some exact methods like the Branch-and-Bound algorithm are suitable for small problems. Some approximations like stochastic simulated annealing for discrete variables or mean-field annealing for continuous variables exist for larger ones, and quantum computers based on the quantum adiabatic annealing principle have also been developed. Here we show that the mean-field approximation of the quantum adiabatic annealing leads to equations similar to those of thermal mean-field annealing. However, a new type of sigmoid function replaces the thermal one. The new mean-field quantum adiabatic annealing can replicate the best-known cut values on some of the popular benchmark Maximum Cut problems.


Subject(s)
Algorithms , Computers
3.
PLoS One ; 17(2): e0264412, 2022.
Article in English | MEDLINE | ID: mdl-35226670

ABSTRACT

The Ising model does not have strictly defined dynamics, only a spectrum. There are different ways to equip it with time dependence, e.g., the Glauber or the Kawasaki dynamics, which are both stochastic, but it means there is a master equation that can also describe their dynamics. These equations can be derived from the Redfield equation, where the spin system is weakly coupled to a bosonic bath. In this paper, we investigate the temperature dependence of the relaxation time of a Glauber-type master equation, especially in the case of the fully connected, uniform Ising model. The finite-size effects were analyzed with a reduced master equation and the thermodynamic limit with a time-dependent mean field equation.


Subject(s)
Computer Simulation , Models, Chemical
4.
Phys Biol ; 17(6): 065002, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32756031

ABSTRACT

In the absence of other tools, monitoring the effects of protective measures, including social distancing and forecasting the outcome of outbreaks is of immense interest. Real-time data is noisy and very often hampered by systematic errors in reporting. Detailed epidemic models may contain a large number of empirical parameters, which cannot be determined with sufficient accuracy. In this paper, we show that the cumulative number of deaths can be regarded as a master variable, and the parameters of the epidemic such as the basic reproduction number, the size of the susceptible population, and the infection rate can be determined. In the SIR model, we derive an explicit single variable differential equation for the evolution of the cumulative number of fatalities. We show that the epidemic in Spain, Italy, and Hubei Province, China follows this master equation closely. We discuss the relationship with the logistic growth model, and we show that it is a good approximation when the basic reproduction number is less than 2.3. This condition is valid for the outbreak in Hubei, but not for the outbreaks in Spain, Italy, and New York. The difference is in the shorter infectious period in China, probably due to the separation policy of the infected. For more complex models, with more internal variables, such as the SEIR model, the equations derived from the SIR model remain valid approximately, due to the separation of timescales.


Subject(s)
COVID-19/epidemiology , Basic Reproduction Number , COVID-19/mortality , Disease Outbreaks , Forecasting , Humans , Models, Statistical , SARS-CoV-2/isolation & purification
5.
J Theor Biol ; 486: 110097, 2020 02 07.
Article in English | MEDLINE | ID: mdl-31790680

ABSTRACT

Chemical evolution is essential in understanding the origins of life. We present a theory for the evolution of molecule masses and show that small molecules grow by random diffusion and large molecules by a preferential attachment process leading eventually to life's molecules. It reproduces correctly the distribution of molecules found via mass spectroscopy for the Murchison meteorite and estimates the start of chemical evolution back to 12.8 billion years following the birth of stars and supernovae. From the Frontier mass between the random and preferential attachment dynamics the birth time of molecule families can be estimated. Amino acids emerge about 165 million years after chemical elements emerge in stars. Using the scaling of reaction rates with the distance of the molecules in space we recover correctly the few days emergence time of amino acids in the Miller-Urey experiment. The distribution of interstellar and extragalactic molecules are both consistent with the evolutionary mass distribution, and their age is estimated to 108 and 65 million years after the start of evolution. From the model, we can determine the number of different molecule compositions at the time of the emergence of Earth to be 1.6 million and the number of molecule compositions in interstellar space to a mere 719 species.


Subject(s)
Evolution, Chemical , Meteoroids , Amino Acids , Humans , Origin of Life
6.
R Soc Open Sci ; 6(10): 190027, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31824682

ABSTRACT

Scaling properties of language are a useful tool for understanding generative processes in texts. We investigate the scaling relations in citywise Twitter corpora coming from the metropolitan and micropolitan statistical areas of the United States. We observe a slightly superlinear urban scaling with the city population for the total volume of the tweets and words created in a city. We then find that a certain core vocabulary follows the scaling relationship of that of the bulk text, but most words are sensitive to city size, exhibiting a super- or a sublinear urban scaling. For both regimes, we can offer a plausible explanation based on the meaning of the words. We also show that the parameters for Zipf's Law and Heaps' Law differ on Twitter from that of other texts, and that the exponent of Zipf's Law changes with city size.

7.
Biomolecules ; 9(10)2019 10 11.
Article in English | MEDLINE | ID: mdl-31614584

ABSTRACT

Recent electronic transport experiments using metallic contacts attached to proteins identified some "stylized facts", which contradict conventional wisdom that increasing either the spatial distance between the electrodes or the temperature suppresses conductance exponentially. These include nearly temperature-independent conductance over the protein in the 30 to 300 K range, distance-independent conductance within a single protein in the 1 to 10 nm range and an anomalously large conductance in the 0.1 to 10 nS range. In this paper, we develop a generalization of the low temperature Landauer formula, which can account for the joint effects of tunneling and decoherence and can explain these new experimental findings. We use novel approximations, which greatly simplify the mathematical treatment and allow us to calculate the conductance in terms of a handful macroscopic parameters, instead of the myriads of microscopic parameters describing the details of an atomic level quantum chemical computation. The new approach makes it possible to get predictions for the outcomes of new experiments without relying solely on high performance computing and can distinguish important and unimportant details of the protein structures from the point of view of transport properties.


Subject(s)
Cytochromes c/metabolism , Electrons , Myoglobin/metabolism , Streptavidin/metabolism , Cytochromes c/chemistry , Electron Transport , Myoglobin/chemistry , Streptavidin/chemistry
8.
PLoS One ; 13(12): e0207000, 2018.
Article in English | MEDLINE | ID: mdl-30543629

ABSTRACT

Bitcoin is a digital currency and electronic payment system operating over a peer-to-peer network on the Internet. One of its most important properties is the high level of anonymity it provides for its users. The users are identified by their Bitcoin addresses, which are random strings in the public records of transactions, the blockchain. When a user initiates a Bitcoin transaction, his Bitcoin client program relays messages to other clients through the Bitcoin network. Monitoring the propagation of these messages and analyzing them carefully reveal hidden relations. In this paper, we develop a mathematical model using a probabilistic approach to link Bitcoin addresses and transactions to the originator IP address. To utilize our model, we carried out experiments by installing more than a hundred modified Bitcoin clients distributed in the network to observe as many messages as possible. During a two month observation period we were able to identify several thousand Bitcoin clients and bind their transactions to geographical locations.


Subject(s)
Commerce , Internet , Models, Statistical , Bayes Theorem , Humans
9.
PLoS One ; 13(3): e0194394, 2018.
Article in English | MEDLINE | ID: mdl-29579067

ABSTRACT

In competitive sports it is often very hard to quantify the performance. A player to score or overtake may depend on only millesimal of seconds or millimeters. In racquet sports like tennis, table tennis and squash many events will occur in a short time duration, whose recording and analysis can help reveal the differences in performance. In this paper we show that it is possible to architect a framework that utilizes the characteristic sound patterns to precisely classify the types of and localize the positions of these events. From these basic information the shot types and the ball speed along the trajectories can be estimated. Comparing these estimates with the optimal speed and target the precision of the shot can be defined. The detailed shot statistics and precision information significantly enriches and improves data available today. Feeding them back to the players and the coaches facilitates to describe playing performance objectively and to improve strategy skills. The framework is implemented, its hardware and software components are installed and tested in a squash court.


Subject(s)
Athletic Performance , Models, Theoretical , Racquet Sports , Signal Processing, Computer-Assisted , Sound , Humans
10.
PLoS One ; 13(2): e0192913, 2018.
Article in English | MEDLINE | ID: mdl-29470518

ABSTRACT

We explain the anomaly of election results between large cities and rural areas in terms of urban scaling in the 1948-2016 US elections and in the 2016 EU referendum of the UK. The scaling curves are all universal and depend on a single parameter only, and one of the parties always shows superlinear scaling and drives the process, while the sublinear exponent of the other party is merely the consequence of probability conservation. Based on the recently developed model of urban scaling, we give a microscopic model of voter behavior in which we replace diversity characterizing humans in creative aspects with social diversity and tolerance. The model can also predict new political developments such as the fragmentation of the left and the immigration paradox.


Subject(s)
Cities , Models, Theoretical , Politics , Humans , Rural Population , United Kingdom , United States , Urban Population
11.
Nano Futures ; 1(3)2017.
Article in English | MEDLINE | ID: mdl-29552645

ABSTRACT

Proteins are insulating molecular solids, yet even those containing easily reduced or oxidized centers can have single-molecule electronic conductances that are too large to account for with conventional transport theories. Here, we report the observation of remarkably high electronic conductance states in an electrochemically-inactive protein, the ~200 kD αVß3 extracelluar domain of human integrin. Large current pulses (up to nA) were observed for long durations (many ms, corresponding to many pC of charge transfer) at large gap (>5nm) distances in an STM when the protein was bound specifically by a small peptide ligand attached to the electrodes. The effect is greatly reduced when a homologous, weakly-binding protein (α4ß1) is used as a control. In order to overcome the limitations of the STM, the time- and voltage-dependence of the conductance were further explored using a fixed-gap (5 nm) tunneling junction device that was small enough to trap a single protein molecule at any one time. Transitions to a high conductance (~ nS) state were observed, the protein being "on" for times from ms to tenths of a second. The high-conductance states only occur above ~ 100mV applied bias, and thus are not an equilibrium property of the protein. Nanoamp two-level signals indicate the specific capture of a single molecule in an electrode gap functionalized with the ligand. This offers a new approach to label-free electronic detection of single protein molecules. Electronic structure calculations yield a distribution of energy level spacings that is consistent with a recently proposed quantum-critical state for proteins, in which small fluctuations can drive transitions between localized and band-like electronic states.

12.
PLoS One ; 10(5): e0126713, 2015.
Article in English | MEDLINE | ID: mdl-25993329

ABSTRACT

Human interaction networks inferred from country-wide telephone activity recordings were recently used to redraw political maps by projecting their topological partitions into geographical space. The results showed remarkable spatial cohesiveness of the network communities and a significant overlap between the redrawn and the administrative borders. Here we present a similar analysis based on one of the most popular online social networks represented by the ties between more than 5.8 million of its geo-located users. The worldwide coverage of their measured activity allowed us to analyze the large-scale regional subgraphs of entire continents and an extensive set of examples for single countries. We present results for North and South America, Europe and Asia. In our analysis we used the well-established method of modularity clustering after an aggregation of the individual links into a weighted graph connecting equal-area geographical pixels. Our results show fingerprints of both of the opposing forces of dividing local conflicts and of uniting cross-cultural trends of globalization.


Subject(s)
Residence Characteristics , Social Networking , Asia , Cluster Analysis , Europe , Geography , Humans , North America , South America
13.
PLoS One ; 9(11): e111973, 2014.
Article in English | MEDLINE | ID: mdl-25383796

ABSTRACT

As more and more users access social network services from smart devices with GPS receivers, the available amount of geo-tagged information makes repeating classical experiments possible on global scales and with unprecedented precision. Inspired by the original experiments of Milgram, we simulated message routing within a representative sub-graph of the network of Twitter users with about 6 million geo-located nodes and 122 million edges. We picked pairs of users from two distant metropolitan areas and tried to find a route between them using local geographic information only; our method was to forward messages to a friend living closest to the target. We found that the examined network is navigable on large scales, but navigability breaks down at the city scale and the network becomes unnavigable on intra-city distances. This means that messages usually arrived to the close proximity of the target in only 3-6 steps, but only in about 20% of the cases was it possible to find a route all the way to the recipient, in spite of the network being connected. This phenomenon is supported by the distribution of link lengths; on larger scales the distribution behaves approximately as P(d) ≈ 1/d, which was found earlier by Kleinberg to allow efficient navigation, while on smaller scales, a fractal structure becomes apparent. The intra-city correlation dimension of the network was found to be D2 = 1.25, less than the dimension D2 = 1.78 of the distribution of the population.


Subject(s)
Cities , Psychology, Social , Social Networking , Computer Graphics , Friends/psychology , Geography , Humans , Internet
14.
PLoS One ; 9(3): e89017, 2014.
Article in English | MEDLINE | ID: mdl-24603620

ABSTRACT

We give a new explanation for why some biological systems can stay quantum coherent for a long time at room temperature, one of the fundamental puzzles of quantum biology. We show that systems with the right level of complexity between chaos and regularity can increase their coherence time by orders of magnitude. Systems near Critical Quantum Chaos or Metal-Insulator Transition (MIT) can have long coherence times and coherent transport at the same time. The new theory tested in a realistic light harvesting system model can reproduce the scaling of critical fluctuations reported in recent experiments. Scaling of return probability in the FMO light harvesting complex shows the signs of universal return probability decay observed at critical MIT. The results may open up new possibilities to design low loss energy and information transport systems in this Poised Realm hovering reversibly between quantum coherence and classicality.


Subject(s)
Light-Harvesting Protein Complexes/metabolism , Light , Models, Biological , Photosynthesis/radiation effects , Quantum Theory , Algorithms , Energy Transfer/radiation effects , Temperature , Time Factors
15.
PLoS One ; 9(2): e86197, 2014.
Article in English | MEDLINE | ID: mdl-24505257

ABSTRACT

The possibility to analyze everyday monetary transactions is limited by the scarcity of available data, as this kind of information is usually considered highly sensitive. Present econophysics models are usually employed on presumed random networks of interacting agents, and only some macroscopic properties (e.g. the resulting wealth distribution) are compared to real-world data. In this paper, we analyze Bitcoin, which is a novel digital currency system, where the complete list of transactions is publicly available. Using this dataset, we reconstruct the network of transactions and extract the time and amount of each payment. We analyze the structure of the transaction network by measuring network characteristics over time, such as the degree distribution, degree correlations and clustering. We find that linear preferential attachment drives the growth of the network. We also study the dynamics taking place on the transaction network, i.e. the flow of money. We measure temporal patterns and the wealth accumulation. Investigating the microscopic statistics of money movement, we find that sublinear preferential attachment governs the evolution of the wealth distribution. We report a scaling law between the degree and wealth associated to individual nodes.


Subject(s)
Databases, Genetic , Models, Econometric
16.
PLoS One ; 8(7): e69805, 2013.
Article in English | MEDLINE | ID: mdl-23936105

ABSTRACT

Our bloodstream is considered to be an environment well separated from the outside world and the digestive tract. According to the standard paradigm large macromolecules consumed with food cannot pass directly to the circulatory system. During digestion proteins and DNA are thought to be degraded into small constituents, amino acids and nucleic acids, respectively, and then absorbed by a complex active process and distributed to various parts of the body through the circulation system. Here, based on the analysis of over 1000 human samples from four independent studies, we report evidence that meal-derived DNA fragments which are large enough to carry complete genes can avoid degradation and through an unknown mechanism enter the human circulation system. In one of the blood samples the relative concentration of plant DNA is higher than the human DNA. The plant DNA concentration shows a surprisingly precise log-normal distribution in the plasma samples while non-plasma (cord blood) control sample was found to be free of plant DNA.


Subject(s)
DNA, Plant/blood , Chloroplasts/genetics , Cluster Analysis , Digestion , Feeding Behavior , Female , Fetal Blood/chemistry , Genome, Chloroplast , Humans , Inflammation/blood , Male , Reproducibility of Results
17.
PLoS One ; 8(3): e57653, 2013.
Article in English | MEDLINE | ID: mdl-23520476

ABSTRACT

The signaling system is a fundamental part of the cell, as it regulates essential functions including growth, differentiation, protein synthesis, and apoptosis. A malfunction in this subsystem can disrupt the cell significantly, and is believed to be involved in certain diseases, with cancer being a very important example. While the information available about intracellular signaling networks is constantly growing, and the network topology is actively being analyzed, the modeling of the dynamics of such a system faces difficulties due to the vast number of parameters, which can prove hard to estimate correctly. As the functioning of the signaling system depends on the parameters in a complex way, being able to make general statements based solely on the network topology could be especially appealing. We study a general kinetic model of the signaling system, giving results for the asymptotic behavior of the system in the case of a network with only activatory interactions. We also investigate the possible generalization of our results for the case of a more general model including inhibitory interactions too. We find that feedback cycles made up entirely of activatory interactions (which we call dynamically positive) are especially important, as their properties determine whether the system has a stable signal-off state, which is desirable in many situations to avoid autoactivation due to a noisy environment. To test our results, we investigate the network topology in the Signalink database, and find that the human signaling network indeed has only significantly few dynamically positive cycles, which agrees well with our theoretical arguments.


Subject(s)
Cell Communication/physiology , Models, Biological , Signal Transduction/physiology , Animals , Caenorhabditis elegans , Drosophila melanogaster , Humans
18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(6 Pt 2): 066111, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23368008

ABSTRACT

Recently, De Martino et al. [J. Stat. Mech. (2009) P08023; Phys. Rev. E 79, 015101 (2009)] have presented a general framework for the study of transportation phenomena on random networks with annealed disorder. One of their most significant achievements was a deeper understanding of the phase transition from the uncongested to the congested phase at a critical traffic load on uncorrelated networks. In this paper, we also study phase transition in transportation networks using a discrete time random walk model. Our aim is to establish a direct connection between the structure of an uncorrelated random graph with quenched disorder and the value of the critical traffic load. We show that if the network is dense, the quenched and annealed formulas for the critical loading probability coincide. For sparse graphs, higher-order corrections, related to the local structure of the network, appear.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(4 Pt 2): 046118, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20481797

ABSTRACT

We analyze gene coexpression network under the random matrix theory framework. The nearest-neighbor spacing distribution of the adjacency matrix of this network follows Gaussian orthogonal statistics of random matrix theory (RMT). Spectral rigidity test follows random matrix prediction for a certain range and deviates afterwards. Eigenvector analysis of the network using inverse participation ratio suggests that the statistics of bulk of the eigenvalues of network is consistent with those of the real symmetric random matrix, whereas few eigenvalues are localized. Based on these IPR calculations, we can divide eigenvalues in three sets: (a) The nondegenerate part that follows RMT. (b) The nondegenerate part, at both ends and at intermediate eigenvalues, which deviates from RMT and expected to contain information about important nodes in the network. (c) The degenerate part with zero eigenvalue, which fluctuates around RMT-predicted value. We identify nodes corresponding to the dominant modes of the corresponding eigenvectors and analyze their structural properties.


Subject(s)
Gene Regulatory Networks , Models, Genetic , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Brain/metabolism , Gene Expression Profiling
20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(6 Pt 2): 065101, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19658546

ABSTRACT

In this Rapid Communication we present an analytic study of sampled networks in the case of some important shortest-path sampling models. We present analytic formulas for the probability of edge discovery in the case of an evolving and a static network model. We also show that the number of discovered edges in a finite network scales much more slowly than predicted by earlier mean-field models. Finally, we calculate the degree distribution of sampled networks and we demonstrate that they are analogous to a destroyed network obtained by randomly removing edges from the original network.

SELECTION OF CITATIONS
SEARCH DETAIL
...