Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Biomed Circuits Syst ; 11(1): 143-152, 2017 02.
Article in English | MEDLINE | ID: mdl-27362990

ABSTRACT

This paper aims to contribute to the advancement of the Wireless Capsule Endoscopy (WCE) field for ColoRectal Cancer (CRC) screening, by developing all electronic circuits to build an innovative wireless endoscopic capsule with a spherical shape, conceived to reduce the friction during its locomotion and thus improving patient's acceptability. The proposed capsule embeds an image sensor with optics and Light Emitting Diodes (LEDs), a control unit with a telemetry module, an actuation system, a battery with a smart recharging circuit able to recharge in 20 minutes, a smart power-on circuit and a localization module. Everything is devised to fit in a small spherical shape with a diameter of 26 mm and a weight of 12.70 g. The authors present a description of the sub-modules involved in the capsule development, together with the firmware and hardware integration. In order to reduce the bandwidth for matching the specifications of the target commercial telemetry, the firmware interfacing of a custom encoder was performed, which is able to compress the incoming images with a negligible loss of information and occupying a number of Look Up-Tables (LUTs) less than 1780. As a preliminary work, a versatile Field Programmable Gate Arrays (FPGA) based demo-board system has been developed in order to test and optimize the functionalities and the performance of the single sub-modules and wireless vision chain system. This work allows to demonstrate the feasibility of a complex biomedical system, with severe constraints by highlighting the necessity to enhance the frame rate in the future.


Subject(s)
Capsule Endoscopy , Telemetry , Wireless Technology , Humans
2.
IEEE Trans Biomed Circuits Syst ; 8(5): 660-8, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25222954

ABSTRACT

Nowadays advanced heart failure is mainly treated through heart transplantation. However, the low availability of donors makes the research of alternative therapies urgent. Continuous-flow left ventricular assist devices (LVADs) are going to assume a more significant role in assisting the failing heart. A recent challenge in clinical practice is the possibility to use LVAD as long-term therapy rather than as a bridge to transplantation. For this reason, more comfortable devices, able to dynamically adapt to the physiological cardiac demand in relation to the patient activity level, are needed in order to improve the life quality of patients with implants. Nevertheless, no control system has been developed yet for this purpose. This work proposes an innovative control strategy for a novel sensorized LVAD, based on the continuous collection of physical and functional parameters coming from implantable sensors and from the LVAD itself. Thanks to the proposed system, both the patient and the LVAD conditions are continuously monitored and the LVAD activity regulated accordingly. Specifically, a Proportional Integrative (PI) and a threshold control algorithms have been implemented, respectively based on flow and pressure feedbacks collected from the embedded sensors. To investigate the feasibility and applicability of this control strategy, an on-bench platform for LVADs sensing and monitoring has been developed and tested.


Subject(s)
Heart-Assist Devices , Monitoring, Physiologic/instrumentation , Telemetry/instrumentation , Algorithms , Humans , Signal Processing, Computer-Assisted , User-Computer Interface
3.
Surg Innov ; 18(3): 223-30, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21742655

ABSTRACT

In the near future, it is likely that 3-dimensional (3D) surgical endoscopes will replace current 2D imaging systems given the rapid spreading of stereoscopy in the consumer market. In this evaluation study, an emerging technology, the autostereoscopic monitor, is compared with the visualization systems mainly used in laparoscopic surgery: a binocular visor, technically equivalent from the viewer's point of view to the da Vinci 3D console, and a standard 2D monitor. A total of 16 physicians with no experience in 3D interfaces performed 5 different tasks, and the execution time and accuracy of the tasks were evaluated. Moreover, subjective preferences were recorded to qualitatively evaluate the different technologies at the end of each trial. This study demonstrated that the autostereoscopic display is equally effective as the binocular visor for both low- and high-complexity tasks and that it guarantees better performance in terms of execution time than the standard 2D monitor. Moreover, an unconventional task, included to provide the same conditions to the surgeons regardless of their experience, was performed 22% faster when using the autostereoscopic monitor than the binocular visor. However, the final questionnaires demonstrated that 60% of participants preferred the user-friendliness of the binocular visor. These results are greatly heartening because autostereoscopic technology is still in its early stages and offers potential improvement. As a consequence, the authors expect that the increasing interest in autostereoscopy could improve its friendliness in the future and allow the technology to be widely accepted in surgery.


Subject(s)
Imaging, Three-Dimensional/instrumentation , Laparoscopes , Lighting/instrumentation , Video-Assisted Surgery/instrumentation , Analysis of Variance , Equipment Design , Humans , Surveys and Questionnaires , Task Performance and Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...