Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropharmacology ; 197: 108736, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34343612

ABSTRACT

The endogenous cannabinoid transmitter system regulates synaptic transmission throughout the nervous system. Unlike conventional transmitters, specific stimuli induce synthesis of endocannabinoids (eCBs) in the postsynaptic neuron, and these travel backwards to modulate presynaptic inputs. In doing so, eCBs can induce short-term changes in synaptic strength and longer-term plasticity. While this eCB regulation is near ubiquitous, it displays major regional and synapse specific variations with different synapse specific forms of short-versus long-term plasticity throughout the brain. These differences are due to the plethora of pre- and postsynaptic mechanisms which have been implicated in eCB signalling, the intricacies of which are only just being realised. In this review, we shall describe the current understanding and highlight new advances in this area, with a focus on the retrograde action of eCBs at CB1 receptors (CB1Rs). This article is part of the special Issue on 'Cannabinoids'.


Subject(s)
Endocannabinoids/physiology , Neuronal Plasticity/physiology , Synapses/physiology , Animals , Cannabinoid Receptor Modulators , Endocannabinoids/pharmacology , Humans , Neuronal Plasticity/drug effects , Neurotransmitter Agents , Receptor, Cannabinoid, CB1/drug effects , Receptor, Cannabinoid, CB1/physiology , Synapses/drug effects
2.
Pharmacol Res Perspect ; 2(6): e00079, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25505619

ABSTRACT

Nordihydroguaiaretic acid (NDGA) is a major biologically active component of the creosote bush, Larrea tridentate, widely used in unregulated therapies. NDGA is a lipoxygenase inhibitor while a derivative, terameprocol, has been trialed as a chemotherapeutic agent. When investigating fatty acid activation of the human transient receptor potential cation channel subfamily A, member 1 (hTRPA1), we found that NDGA activated the channel. Here we investigate the actions of NDGA and terameprocol at hTRPA1 and the consequences of this for noxious cold sensitivity in mice. hTRPA1 was stably expressed in HEK 293 cells (HEK 293-TRPA1) and channel activity examined by measuring changes in intracellular calcium ([Ca]i) using a fluorescent dye and activation of membrane currents using patch clamp electrophysiology. The effects of local NDGA and terameprocol application on acetone-induced paw flinching were examined in mice. NDGA (pEC50 of 5.4 ± 0.1, maximum change in fluorescence of 385 ± 30%) and terameprocol (pEC50 4.5 ± 0.2, maximum 550 ± 75%) increased [Ca]i in HEK 293-hTRPA1 cells. NDGA also induced an increase in membrane conductance in HEK 293-hTRPA1 cells. These effects were prevented by the TRPA1 antagonist HC-030031, and were dependent on the presence of Cys621, Cys 641, and Cys 665 in hTRPA1. Neither NDGA nor terameprocol alone produced spontaneous pain behaviors in mice after hind paw injection, but both enhanced responses to acetone. NDGA and terameprocol are efficacious activators of TRPA1. NDGA should be used with care to probe lipoxygenase involvement in nociception while TRPA1 activity should be considered when considering use of these drugs in humans.

SELECTION OF CITATIONS
SEARCH DETAIL
...