Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Sustain Chem Eng ; 11(37): 13574-13583, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37767083

ABSTRACT

In this study, the laser-induced graphitization process of sustainable chitosan-based formulations was investigated. In particular, optimal lasing conditions were investigated alongside the effect of borax concentration in the chitosan matrix. In all cases, it was found that the obtained formulations were graphitizable with a CO2 laser. This process gave rise to the formation of high surface area, porous, and electrically conductive laser-induced graphene (LIG) structures. It was found that borax, as a cross-linker of chitosan, enabled the graphitization process when its content was ≥30 wt % in the chitosan matrix, allowing the formation of an LIG phase with a significant content of graphite-like structures. The graphitization process was investigated by thermogravimetric analysis (TGA), Raman, X-ray photoemission (XPS), and Fourier transform infrared (FTIR) spectroscopies. LIG electrodes obtained from CS/40B formulations displayed a sheet resistance as low as 110 Ω/sq. Electrochemical characterization was performed after a 10 min electrode activation by cycling in 1 M KCl. A heterogeneous electron transfer rate, k0, of 4 × 10-3 cm s-1 was determined, indicating rapid electron transfer rates at the electrode surface. These results show promise for the introduction of a new class of sustainable composites for LIG electrochemical sensing platforms.

2.
Nanomaterials (Basel) ; 12(15)2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35957117

ABSTRACT

Ultra-sensitive and responsive humidity sensors were fabricated by deposition of graphene oxide (GO) on laser-induced graphene (LIG) electrodes fabricated by a low-cost visible laser scribing tool. The effects of GO layer thickness and electrode geometry were investigated. Sensors comprising 0.33 mg/mL GO drop-deposited on spiral LIG electrodes exhibited high sensitivity up to 1800 pF/% RH at 22 °C, which is higher than previously reported LIG/GO sensors. The high performance was ascribed to the high density of the hydroxyl groups of GO, promoted by post-synthesis sonication treatment, resulting in high water physisorption rates. As a result, the sensors also displayed good stability and short response/recovery times across a wide tested range of 0-97% RH. The fabricated sensors were benchmarked against commercial humidity sensors and displayed comparable performance and stability. Finally, the sensors were integrated with a near-field communication tag to function as a wireless, battery-less humidity sensor platform for easy read-out of environmental humidity values using smartphones.

3.
Nanotechnology ; 33(40)2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35764059

ABSTRACT

We report a simple, scalable two-step method for direct-write laser fabrication of 3D, porous graphene-like carbon electrodes from polyimide films with integrated contact plugs to underlying metal layers (Au or Ni). Irradiation at high average CO2laser power (30 W) and low scan speed (∼18 mm s)-1leads to formation of 'keyhole' contact plugs through local ablation of polyimide (initial thickness 17µm) and graphitization of the plug perimeter wall. Top-surface laser-induced graphene (LIG) electrodes are then formed and connected to the plug by raster patterning at lower laser power (3.7 W) and higher scan speed (200 mm s)-1. Sheet resistance data (71 ± 15 Ω sq.)-1indicates formation of high-quality surface LIG, consistent with Raman data which yield sharp first- and second-order peaks. We have also demonstrated that high-quality LIG requires a minimum initial polyimide thickness. Capacitance data measured between surface LIG electrodes and the buried metal film indicate a polyimide layer of thickness ∼7µm remaining following laser processing. By contrast, laser graphitization of polyimide of initial thickness ∼8µm yielded devices with large sheet resistance (>1 kΩ sq.)-1. Raman data also indicated significant disorder. Plug contact resistance values were calculated from analysis of transfer line measurement data for single- and multi-plug test structures. Contacts to buried nickel layers yielded lower plug resistances (1-plug: 158 ± 7 Ω , 4-plug: 31 ± 14 Ω) compared to contacts to buried gold (1-plug: 346 ± 37 Ω , 4-plug: 52 ± 3 Ω). Further reductions are expected for multi-plug structures with increased areal density. Proof-of-concept mm-scale LIG electrochemical devices with local contact plugs yielded rapid electron transfer kinetics (rate constantk0 âˆ¼ 0.017 cm s-1), comparable to values measured for exposed Au films (k0 âˆ¼0.023 cm s)-1. Our results highlight the potential for integration of LIG-based sensor electrodes with semiconductor or roll-to-roll manufacturing.

4.
Talanta ; 246: 123492, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35487014

ABSTRACT

We developed a flexible laser scribed graphitic carbon based lactate biosensor fabricated using a low cost 450 nm laser. We demonstrated a facile fabrication method involving electrodeposition of platinum followed by two casting steps for modification with chitosan and lactate oxidase. The biosensor demonstrated chronoamperometric lactate detection within a linear range from 0.2 mM to 3 mM, (R2 > 0.99), with a limit of detection of 0.11 mM and a sensitivity of 35.8 µA/mM/cm2. The biosensor was successful in performing up to 10 consecutive measurements (one after the other) indicating good working stability (RSD <5%). Concerning storage stability, there was no decrease in signal response after 30 days of storage at 4 °C. Additionally, we demonstrate enzymatic lactate detection whilst the flexible polyimide substrates were fixed at a curvature (K) of 0.14 mm-1. No noticeable change in signal response was observed in comparison to calibrations obtained at a curvature of 0 mm-1, signifying potential opportunities for sensor attachment or integration with oral-care products such as mouth swabs. Both laser scribed graphitic carbon and Ag/AgCl modified-laser scribed graphitic carbon were successful as reference electrodes for chronoamperometric lactate measurements. Furthermore, using a three-electrode configuration on polyimide, lactate detection in both artificial saliva and sterile human serum samples was achieved for two spiked concentrations (0.5 mM and 1 mM).


Subject(s)
Biosensing Techniques , Chitosan , Graphite , Biosensing Techniques/methods , Carbon , Electrochemical Techniques/methods , Electrodes , Humans , Lactic Acid , Lasers , Mixed Function Oxygenases , Platinum
5.
Nanomaterials (Basel) ; 11(8)2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34443939

ABSTRACT

Interleukin-6 (IL-6) is an important immuno-modulating cytokine playing a pivotal role in inflammatory processes in disease induction and progression. As IL-6 serves as an important indicator of disease state, it is of paramount importance to develop low cost, fast and sensitive improved methods of detection. Here we present an electrochemical immunosensor platform based on the use of highly porous graphitic carbon electrodes fabricated by direct laser writing of commercial polyimide tapes and chemically modified with capture IL-6 antibodies. The unique porous and 3D morphology, as well as the high density of edge planes of the graphitic carbon electrodes, resulted in a fast heterogeneous electron transfer (HET) rate, k0 = 0.13 cm/s. The resulting immunosensor showed a linear response to log of concentration in the working range of 10 to 500 pg/mL, and low limit of detection (LOD) of 5.1 pg/mL IL-6 in phosphate buffer saline. The total test time was approximately 90 min, faster than the time required for ELISA testing. Moreover, the assay did not require additional sample pre-concentration or labelling steps. The immunosensor shelf-life was long, with stable results obtained after 6 weeks of storage at 4 °C, and the selectivity was high, as no response was obtained in the presence of another inflammatory cytokine, Interlukin-4. These results show that laser-fabricated graphitic carbon electrodes can be used as selective and sensitive electrochemical immunosensors and offer a viable option for rapid and low-cost biomarker detection for point-of-care analysis.

6.
ACS Omega ; 5(3): 1540-1548, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-32010827

ABSTRACT

The development of three-dimensional (3D) porous graphitic structures is of great interest for electrochemical sensing applications as they can support fast charge transfer and mass transport through their extended, large surface area networks. In this work, we present the facile fabrication of conductive and porous graphitic electrodes by direct laser writing techniques. Irradiation of commercial polyimide sheets (Kapton tape) was performed using a low-cost laser engraving machine with visible excitation wavelength (405 nm) at low power (500 mW), leading to formation of 3D laser-induced graphene (LIG) structures. Systematic correlation between applied laser dwell time per pixel ("dwell time") and morphological/structural properties of fabricated electrodes showed that conductive and highly 3D porous structures with spectral signatures of nanocrystalline graphitic carbon materials were obtained at laser dwell times between 20 and 110 ms/pix, with graphenelike carbon produced at 50 ms/pix dwell time, with comparable properties to LIG obtained with high cost CO2 lasers. Electrochemical characterization with inner and outer sphere mediators showed fast electron transfer rates, comparable to previously reported 2D/3D graphene-based materials and other graphitic carbon electrodes. This work opens the way to the facile fabrication of low-cost, disposable electrochemical sensor platforms for decentralized assays.

SELECTION OF CITATIONS
SEARCH DETAIL
...