Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Hear Res ; 423: 108367, 2022 09 15.
Article in English | MEDLINE | ID: mdl-34686384

ABSTRACT

In the cochlea, mechano-electrical transduction is preceded by dynamic range compression. Outer hair cells (OHCs) and their voltage dependent length changes, known as electromotility, play a central role in this compression process, but the exact mechanisms are poorly understood. Here we review old and new experimental findings and show that (1) just audible high-frequency tones evoke an ∼1-microvolt AC receptor potential in basal OHCs; (2) any mechanical amplification of soft high-frequency tones by OHC motility would have an adverse effect on their audibility; (3) having a higher basolateral K+ conductance, while increasing the OHC corner frequency, does not boost the magnitude of the high-frequency AC receptor potential; (4) OHC receptor currents display a substantial rectified (DC) component; (5) mechanical DC responses (baseline shifts) to acoustic stimuli, while insignificant on the basilar membrane, can be comparable in magnitude to AC responses when recorded in the organ of Corti, both in the apex and the base. In the basal turn, the DC component may even exceed the AC component, lending support to Dallos' suggestion that both apical and basal OHCs display a significant degree of rectification. We further show that (6) low-intensity cochlear traveling waves, by virtue of their abrupt transition from fast to slow propagation, are well suited to transport high-frequency energy with minimal losses (∼2-dB loss for 16-kHz tones in the gerbil); (7) a 90-dB, 16-kHz tone, if transmitted without loss to its tonotopic place, would evoke a destructive displacement amplitude of 564 nm. We interpret these findings in a framework in which local dissipation is regulated by OHC motility. This article is part of the Special Issue Outer hair cell Edited by Joseph Santos-Sacchi and Kumar Navaratnam.


Subject(s)
Hair Cells, Auditory, Outer , Hair Cells, Vestibular , Acoustic Stimulation , Basilar Membrane , Cochlea/physiology , Hair Cells, Auditory, Outer/physiology
2.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Article in English | MEDLINE | ID: mdl-34551976

ABSTRACT

Bushcrickets (katydids) rely on only 20 to 120 sensory units located in their forelegs to sense sound. Situated in tiny hearing organs less than 1 mm long (40× shorter than the human cochlea), they cover a wide frequency range from 1 kHz up to ultrasounds, in tonotopic order. The underlying mechanisms of this miniaturized frequency-place map are unknown. Sensory dendrites in the hearing organ (crista acustica [CA]) are hypothesized to stretch, thereby driving mechanostransduction and frequency tuning. However, this has not been experimentally confirmed. Using optical coherence tomography (OCT) vibrometry, we measured the relative motion of structures within and adjacent to the CA of the bushcricket Mecopoda elongata We found different modes of nanovibration in the CA that have not been previously described. The two tympana and the adjacent septum of the foreleg that enclose the CA were recorded simultaneously, revealing an antiphasic lever motion strikingly reminiscent of vertebrate middle ears. Over the entire length of the CA, we were able to separate and compare vibrations of the top (cap cells) and base (dorsal wall) of the sensory tissue. The tuning of these two structures, only 15 to 60 µm (micrometer) apart, differed systematically in sharpness and best frequency, revealing a tuned periodic deformation of the CA. The relative motion of the two structures, a potential drive of transduction, demonstrated sharper tuning than either of them. The micromechanical complexity indicates that the bushcricket ear invokes multiple degrees of freedom to achieve frequency separation with a limited number of sensory cells.


Subject(s)
Ear, Middle/physiology , Gryllidae/physiology , Hearing , Sound , Tympanic Membrane/physiology , Vibration , Acoustic Stimulation , Animals
3.
Elife ; 82019 09 24.
Article in English | MEDLINE | ID: mdl-31547906

ABSTRACT

Outer hair cells (OHCs) in the mammalian ear exhibit electromotility, electrically driven somatic length changes that are thought to mechanically amplify sound-evoked vibrations. For this amplification to work, OHCs must respond to sounds on a cycle-by-cycle basis even at frequencies that exceed the low-pass corner frequency of their cell membranes. Using in vivo optical vibrometry we tested this theory by measuring sound-evoked motility in the 13-25 kHz region of the gerbil cochlea. OHC vibrations were strongly rectified, and motility exhibited first-order low-pass characteristics with corner frequencies around 3 kHz- more than 2.5 octaves below the frequencies the OHCs are expected to amplify. These observations lead us to suggest that the OHCs operate more like the envelope detectors in a classical gain-control scheme than like high-frequency sound amplifiers. These findings call for a fundamental reconsideration of the role of the OHCs in cochlear function and the causes of cochlear hearing loss.


Subject(s)
Cell Movement , Hair Cells, Auditory, Outer/physiology , Animals , Gerbillinae , Hearing
4.
Nat Commun ; 9(1): 3054, 2018 08 03.
Article in English | MEDLINE | ID: mdl-30076297

ABSTRACT

The micromechanical mechanisms that underpin tuning and dynamic range compression in the mammalian inner ear are fundamental to hearing, but poorly understood. Here, we present new, high-resolution optical measurements that directly map sound-evoked vibrations on to anatomical structures in the intact, living gerbil cochlea. The largest vibrations occur in a tightly delineated hotspot centering near the interface between the Deiters' and outer hair cells. Hotspot vibrations are less sharply tuned, but more nonlinear, than basilar membrane vibrations, and behave non-monotonically (exhibiting hyper-compression) near their characteristic frequency. Amplitude and phase differences between hotspot and basilar membrane responses depend on both frequency and measurement angle, and indicate that hotspot vibrations involve longitudinal motion. We hypothesize that structural coupling between the Deiters' and outer hair cells funnels sound-evoked motion into the hotspot region, under the control of the outer hair cells, to optimize cochlear tuning and compression.


Subject(s)
Cochlea/physiology , Hearing/physiology , Motion , Sound , Vibration , Acoustic Stimulation/methods , Animals , Basilar Membrane/physiology , Female , Gerbillinae/physiology , Hair Cells, Auditory, Outer/physiology , Mammals , Organ of Corti/physiology , Pressure
SELECTION OF CITATIONS
SEARCH DETAIL
...