Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Biomed Mater ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025122

ABSTRACT

The majority of research on nanomaterials has been concentrated on metal nanoparticles since they are easily made and manipulated. Nanomaterials have shown a wide range of applications in biology. Nevertheless, their bioactivity declines due to their extreme susceptibility to chemical and physical stimuli. The goal of encapsulating these nanomaterials in a matrix is gradually being pursued, which boosts their affordability, stability, and usability. Metal-organic frameworks, often known as MOFs, have the potential to be the best platforms for encapsulating metal nanoparticles due to their well-defined frameworks, persistent porosity, and flexibility in modification. In this investigation, we report the synthesis and optimization of polyvinylpyrrolidone (PVP)-stabilized Se (0) nanoparticles and novel Se@ZIF-8 by chemical method. The sizes and morphologies of Se (0) and Se@ZIF-8 were affected by the ratios of Se/Zn2+ and [hmim]/Zn2+ used. The optimized Se@ZIF-8 nanoparticles exhibited a particle size and zeta potential of 319 nm and -34 mv respectively. Transmission electron microscopy displayed spherical morphology for Se(0) nanoparticles, whereas the surface morphology of novel Se@ZIF-8 nanoparticles was drastically changed to hexagonal shaped structures with smooth surface morphologies in scanning electron microscopy. The DTA, TG/DTG, XRD analysis confirmed the presence of novel Se incorporated ZIF-8 nanoparticulate framework. The synthesized novel Se@ZIF-8 nanoparticles showed efficient antibacterial activity as evidenced by low MIC values. Interestingly, these Se@ZIF-8 NPs not only inhibited biofilm formation in S. marcescens, but also effectively eradicated mature biofilms by degrading the eDNA of the EPS layer. It was observed that Se@ZIF-8 targeted the Quroum Sensing pathway and reduced its associated virulence factors production. This work opens up a different approach of Se@ZIF-8 nanoparticles as novel antibiotics to treat biofilm-associated infections caused by S. marcescens and offer a solution for antimicrobial resistance. .

2.
Chem Biol Interact ; 396: 111027, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38735452

ABSTRACT

Antibiotic resistance poses a significant challenge in modern medicine, urging the exploration of innovative approaches to combat bacterial infections. Biofilms, complex bacterial communities encased in a protective matrix, contribute to resistance by impeding antibiotic efficacy and promoting genetic exchange. Understanding biofilm dynamics is crucial for developing effective antimicrobial therapies against antibiotic resistance. This study explores the potential of flavone to combat biofilm-induced antibiotic resistance by employing in-vitro biochemical, cell biology, and Insilico (MD simulation), approaches. Flavone exhibited potent antibacterial effects with a low minimum inhibitory concentration by inducing intracellular reactive oxygen species. Flavones further inhibited the formation of biofilms by 50-60 % and disrupted the pre-formed biofilms by reducing the extracellular polysaccharide substance protective layer formed on the biofilm by 80 %. Quorum sensing (QS) plays a crucial role in bacterial pathogenicity and flavone significantly attenuated the production of QS-induced virulence factors like urease, protease, lipase, hemolysin and prodigiosin pigment in a dose-dependent manner. Further Insilico molecular docking studies along with molecular dynamic simulations run for 100 ns proved the stable binding affinity of flavone with QS-specific proteins which are crucial for biofilm formation. This study demonstrates the therapeutic potential of flavone to target QS-signaling pathway to combat S.marcescens biofilms.


Subject(s)
Anti-Bacterial Agents , Biofilms , Flavones , Microbial Sensitivity Tests , Molecular Docking Simulation , Quorum Sensing , Biofilms/drug effects , Quorum Sensing/drug effects , Flavones/pharmacology , Flavones/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Molecular Dynamics Simulation , Reactive Oxygen Species/metabolism , Drug Resistance, Microbial/drug effects , Virulence Factors/metabolism , Bacterial Proteins/metabolism
3.
Cell Biochem Biophys ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702575

ABSTRACT

In recent decades, the development of novel antimicrobials has significantly slowed due to the emergence of antimicrobial resistance (AMR), intensifying the global struggle against infectious diseases. Microbial populations worldwide rapidly develop resistance due to the widespread use of antibiotics, primarily targeting drug-resistant germs. A prominent manifestation of this resistance is the formation of biofilms, where bacteria create protective layers using signaling pathways such as quorum sensing. In response to this challenge, the CRISPR-Cas9 method has emerged as a ground-breaking strategy to counter biofilms. Initially identified as the "adaptive immune system" of bacteria, CRISPR-Cas9 has evolved into a state-of-the-art genetic engineering tool. Its exceptional precision in altering specific genes across diverse microorganisms positions it as a promising alternative for addressing antibiotic resistance by selectively modifying genes in diverse microorganisms. This comprehensive review concentrates on the historical background, discovery, developmental stages, and distinct components of CRISPR Cas9 technology. Emphasizing its role as a widely used genome engineering tool, the review explores how CRISPR Cas9 can significantly contribute to the targeted disruption of genes responsible for biofilm formation, highlighting its pivotal role in reshaping strategies to combat antibiotic resistance and mitigate the challenges posed by biofilm-associated infectious diseases.

4.
Biomed Mater ; 19(2)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38364289

ABSTRACT

Respiratory tract infections (RTIs) are a common cause of mortality and morbidity in the human population. The overuse of antibiotics to overcome such infections has led to antibiotic resistance. The emergence of multidrug resistant bacteria is necessitating the development of novel therapeutic techniques in order to avoid a major global clinical threat. Our study aims to investigate the potential of tryptone stabilised silver nanoparticles (Ts-AgNPs) on planktonic and biofilms produced byKlebsiella pneumoniae(K. pneumoniae)and Pseudomonas aeruginosa(P. aeruginosa). The MIC50of Ts-AgNPs was found to be as low as 1.7 µg ml-1and 2.7 µg ml-1forK. pneumoniae and P.aeruginosarespectively. Ts-AgNPs ability to alter redox environment by producing intracellular ROS, time-kill curves showing substantial decrease in the bacterial growth and significantly reduced colony forming units further validate its antimicrobial effect. The biofilm inhibition and eradication ability of Ts-AgNPs was found to be as high as 93% and 97% in both the tested organisms. A significant decrease in the eDNA and EPS quantity in Ts-AgNPs treated cells proved its ability to successfully distort the matrix and matured biofilms. Interestingly Ts-AgNPs also attenuated QS-induced virulence factors production. This study paves way to develop Ts-AgNPs as novel antibiotics against RTIs causing bacterial biofilms.


Subject(s)
Metal Nanoparticles , Peptones , Respiratory Tract Infections , Humans , Silver/pharmacology , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Biofilms , Respiratory Tract Infections/drug therapy , Pseudomonas aeruginosa
5.
Int. microbiol ; 26(4): 693-704, Nov. 2023. graf, ilus
Article in English | IBECS | ID: ibc-227463

ABSTRACT

Aim of the study: The rising instances of multidrug-resistant pathogens are rapidly evolving into a global healthcare crisis. Identifying new ways of synthesis of antibiotics is both time-consuming and expensive. Repurposing existing drugs for the treatment of such antimicrobial-resistant pathogens has also been explored. Methods and results: In the current study, ebselen was screened for antibacterial and antibiofilm activity against Serratia marcescens. Various antibacterial studies such as minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), time-kill curves, intracellular reactive oxygen species (ROS) quantification, and colony-forming unit assays were performed. The antibiofilm potential was assayed by biofilm inhibition, cell surface hydrophobicity assay, eradication, quantification of extracellular DNA (eDNA), and extracellular polymeric substance (EPS) layer and scanning electron microscopy (SEM) analysis were performed. Anti-quorum sensing assay was validated by quantifying the virulence factors production. Further molecular docking of ebselen with two quorum sensing (QS) specific proteins was also carried out. Antibacterial susceptibility tests showed potent antimicrobial activity of ebselen against S. marcescens with MIC50 of 14 μg/mL. Ebselen’s ability to disturb the redox environment by inducing significant ROS generation led to bacterial death. It also showed concentration-dependent bactericidal activity as indicated by reduced bacterial growth and colony-forming unit propagation. Ebselen was also found to prevent biofilm attachment by altering the cell surface hydrophobicity while also being effective against preformed biofilms as validated by scanning electron microscopy (SEM) analysis. Additionally, ebselen showed reduced virulence factors like urease enzyme activity and prodigiosin pigment production indicating its promising anti-quorum sensing potential...(AU)


Subject(s)
Humans , Male , Female , Serratia marcescens , Biofilms , Anti-Bacterial Agents , Microbiology , Microbiological Techniques , Bacterial Infections/drug therapy
6.
Int Microbiol ; 26(4): 693-704, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36507979

ABSTRACT

AIM OF THE STUDY: The rising instances of multidrug-resistant pathogens are rapidly evolving into a global healthcare crisis. Identifying new ways of synthesis of antibiotics is both time-consuming and expensive. Repurposing existing drugs for the treatment of such antimicrobial-resistant pathogens has also been explored. METHODS AND RESULTS: In the current study, ebselen was screened for antibacterial and antibiofilm activity against Serratia marcescens. Various antibacterial studies such as minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), time-kill curves, intracellular reactive oxygen species (ROS) quantification, and colony-forming unit assays were performed. The antibiofilm potential was assayed by biofilm inhibition, cell surface hydrophobicity assay, eradication, quantification of extracellular DNA (eDNA), and extracellular polymeric substance (EPS) layer and scanning electron microscopy (SEM) analysis were performed. Anti-quorum sensing assay was validated by quantifying the virulence factors production. Further molecular docking of ebselen with two quorum sensing (QS) specific proteins was also carried out. Antibacterial susceptibility tests showed potent antimicrobial activity of ebselen against S. marcescens with MIC50 of 14 µg/mL. Ebselen's ability to disturb the redox environment by inducing significant ROS generation led to bacterial death. It also showed concentration-dependent bactericidal activity as indicated by reduced bacterial growth and colony-forming unit propagation. Ebselen was also found to prevent biofilm attachment by altering the cell surface hydrophobicity while also being effective against preformed biofilms as validated by scanning electron microscopy (SEM) analysis. Additionally, ebselen showed reduced virulence factors like urease enzyme activity and prodigiosin pigment production indicating its promising anti-quorum sensing potential. Molecular docking analysis validated the strong binding of ebselen with QS-specific proteins (1Joe and PigG) with binding energies of - 6.6 and - 8.1kj/mol through hydrogen bonds and aromatic interactions. These results show that ebselen has potent antibiofilm potential that can be explored to identify treatment against bacterial infections.


Subject(s)
Extracellular Polymeric Substance Matrix , Serratia marcescens , Serratia marcescens/genetics , Molecular Docking Simulation , Extracellular Polymeric Substance Matrix/metabolism , Drug Repositioning , Reactive Oxygen Species/metabolism , Biofilms , Anti-Bacterial Agents/chemistry , Virulence Factors/genetics
7.
Appl Biochem Biotechnol ; 194(2): 671-693, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34449042

ABSTRACT

The growth of respiratory diseases, as witnessed through the SARS and COVID-19 outbreaks, and antimicrobial-resistance together pose a serious threat to humanity. One reason for antimicrobial resistance is formation of bacterial biofilms. In this study the sulphated polysaccharides from green algae Chlamydomonas reinhardtii (Cr-SPs) is tested for its antibacterial and antibiofilm potential against Klebsiella pneumoniae and Serratia marcescens. Agar cup assay clearly indicated the antibacterial potential of Cr-SPs. Minimum inhibitory concentration (MIC50) of Cr-SPs against Klebsiella pneumoniae was found to be 850 µg/ml, and it is 800 µg/ml in Serratia marcescens. Time-kill and colony-forming ability assays suggest the concentration-dependent bactericidal potential of Cr-SPs. Cr-SPs showed 74-100% decrease in biofilm formation in a concentration-dependent manner by modifying the cell surface hydrophobic properties of these bacteria. Cr-SPs have also distorted preformed-biofilms by their ability to interact and destroy the extra polymeric substance and eDNA of the matured biofilm. Scanning electron microscopy analysis showed that Cr-SPs effectively altered the morphology of these bacterial cells and distorted the bacterial biofilms. Furthermore reduced protease, urease and prodigiosin pigment production suggest that Cr-SPs interferes the quorum sensing mechanism in these bacteria. The current study paves way towards developing Cr-SPs as a control strategy for treatment of respiratory tract infections.


Subject(s)
Biofilms/drug effects , Polysaccharides/pharmacology , Quorum Sensing/drug effects , Respiratory Tract Infections/drug therapy , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Biofilms/growth & development , COVID-19/virology , Chlorophyta/chemistry , Humans , Klebsiella pneumoniae/growth & development , Klebsiella pneumoniae/pathogenicity , Microbial Sensitivity Tests , Polysaccharides/chemistry , Respiratory Tract Infections/microbiology , SARS-CoV-2/drug effects , Serratia marcescens/growth & development , Serratia marcescens/pathogenicity , COVID-19 Drug Treatment
8.
Biol Chem ; 402(7): 769-783, 2021 06 25.
Article in English | MEDLINE | ID: mdl-33735944

ABSTRACT

Bacteria are increasingly relying on biofilms to develop resistance to antibiotics thereby resulting in their failure in treating many infections. In spite of continuous research on many synthetic and natural compounds, ideal anti-biofilm molecule is still not found thereby warranting search for new class of molecules. The current study focuses on exploring anti-biofilm potential of selenocystine against respiratory tract infection (RTI)-causing bacteria. Anti-bacterial and anti-biofilm assays demonstrated that selenocystine inhibits the growth of bacteria in their planktonic state, and formation of biofilms while eradicating preformed-biofilm effectively. Selenocystine at a MIC50 as low as 42 and 28 µg/mL effectively inhibited the growth of Klebsiella pneumonia and Pseudomonas aeruginosa. The antibacterial effect is further reconfirmed by agar cup diffusion assay and growth-kill assay. Selenocystine showed 30-60% inhibition of biofilm formation in K. pneumonia, and 44-70% in P. aeruginosa respectively. It also distorted the preformed-biofilms by degrading the eDNA component of the Extracellular Polymeric Substance matrix. Molecular docking studies of selenocystine with quorum sensing specific proteins clearly showed that through the carboxylic acid moiety it interacts and inhibits the protein function, thereby confirming its anti-biofilm potential. With further validation selenocystine can be explored as a potential candidate for the treatment of RTIs.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cystine/analogs & derivatives , Klebsiella pneumoniae/drug effects , Organoselenium Compounds/pharmacology , Pseudomonas aeruginosa/drug effects , Respiratory Tract Infections/drug therapy , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Cystine/chemistry , Cystine/pharmacology , Dose-Response Relationship, Drug , Humans , Klebsiella pneumoniae/growth & development , Microbial Sensitivity Tests , Organoselenium Compounds/chemistry , Pseudomonas aeruginosa/growth & development , Quorum Sensing/drug effects , Respiratory Tract Infections/microbiology
9.
Int J Pharm ; 587: 119696, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32736020

ABSTRACT

Cystic fibrosis (CF), an atypical genetic disorder, develops due to mutations in cystic fibrosis transmembrane conductance regulator gene, which consequently leads to infection and inflammation. CF infections are commonly characterized by the presence of an extracellular polymeric substance (EPS) matrix or the 'biofilm', which presents an entry barrier for the antibiotics. The current research work focuses on systematic Quality by Design based development of cefoperazone sodium loaded liposome formulation. DPPC and cholesterol containing liposomes were formulated by using 'thin film hydration' method. The freeze drying and further characterization of optimized formulation was carried out for particle size distribution, % entrapment efficiency, FTIR, DSC and pXRD. The IC50 value of the formulation (0.42 µg/ml) was found to be half of that of the drug (0.92 µg/ml). The formulation showed 50% biofilm inhibition and eradication at ~1 µg/ml. The cell surface hydrophobicity was reduced to ~50% at MIC value of the formulation while it was 78% for the control. The EPS component of P. aeruginosa biofilm reduced to 17% after treatment with 0.42 µg/ml formulation. The effect of formulation on biofilm was further confirmed by SEM analysis which revealed that the biofilm was disintegrated on treatment with 0.42 µg/ml of formulation.


Subject(s)
Cystic Fibrosis , Pseudomonas Infections , Anti-Bacterial Agents/pharmacology , Biofilms , Cefoperazone , Cystic Fibrosis/drug therapy , Extracellular Polymeric Substance Matrix , Humans , Liposomes , Pseudomonas aeruginosa
10.
J Biochem ; 166(6): 463-474, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31385584

ABSTRACT

Parkinsonism-linked mutations in alanine and glutamic acid residues of the pre-synaptic protein α-Synuclein (α-Syn) affect specific tertiary interactions essential for stability of the native state and make it prone to more aggregation. Many of the currently available drugs used for the treatment of Parkinson's disease (PD) are not very effective and are associated with multiple side effects. Recently, marine algae have been reported to have sulphated polysaccharides which offers multiple pharmaceutical properties. With this background, we have isolated sulphated polysaccharides from Chlamydomonas reinhardtii (Cr-SPs) and investigated their effects on inhibition of fibrillation/aggregation of α-Syn mutants through a combination of spectroscopic and microscopic techniques. The kinetics of α-Syn fibrillation establishes that Cr-SPs are very effective in inhibiting fibrillation of α-Syn mutants. The morphological changes associated with the fibrillation/aggregation process have been monitored by transmission electron microscopy. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis gel image suggests that Cr-SPs increase the amount of soluble protein after completion of the fibrillation/aggregation process. The circular dichroism results showed that Cr-SPs efficiently delay the conversion of native protein into ß-sheet-rich structures. Thus, the current work has considerable therapeutic implications towards deciphering the potential of Cr-SPs to act against PD and other protein aggregation-related disorders.


Subject(s)
Chlamydomonas reinhardtii/chemistry , Neuroprotective Agents/pharmacology , Parkinson Disease/drug therapy , Polysaccharides/pharmacology , alpha-Synuclein/antagonists & inhibitors , Humans , Mutation , Neuroprotective Agents/chemistry , Neuroprotective Agents/isolation & purification , Parkinson Disease/metabolism , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Protein Aggregates/drug effects , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
11.
Sci Rep ; 8(1): 5692, 2018 04 09.
Article in English | MEDLINE | ID: mdl-29632314

ABSTRACT

α-Synuclein (α-Syn) is an intrinsically disordered presynaptic protein, whose aggregation is critically involved in Parkinson's disease (PD). Many of the currently available drugs for the treatment of PD are not sufficiently effective in preventing progress of the disease and have multiple side-effects. With this background, efficient drug candidates, sulfated polysaccharides from Chlamydomonas reinhardtii (Cr-SPs) were isolated and investigated for their effect on inhibition of α-Syn fibrillation and dissolution of preformed α-Syn fibrillar structures through a combination of spectroscopic and microscopic techniques. The kinetics of α-Syn fibrillation demonstrates that Cr-SPs are very effective in inhibiting α-Syn fibrillation. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis gel-image shows presence of soluble protein in the presence of Cr-SPs after completion of the fibrillation process. The morphological changes associated with fibrillation monitored by transmission electron microscopy showed that Cr-SPs efficiently bind with α-Syn and delay the conversion of α-helical intermediate into ß-sheet rich structures. Cr-SPs are also effective even if onset of α-Syn fibrillation has already started and they also have the ability to dissolve pre-formed fibrils. Thus, the current work has substantial therapeutic implications towards unlocking the immense potential of algal products to function as alternative therapeutic agents against PD and other protein aggregation related disorders.


Subject(s)
Chlamydomonas reinhardtii/metabolism , Polysaccharides/pharmacology , Sulfates/metabolism , alpha-Synuclein/chemistry , Algal Proteins/chemistry , Algal Proteins/pharmacology , Electrophoresis, Polyacrylamide Gel , Humans , Microscopy, Electron, Transmission , Parkinson Disease/metabolism , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Protein Aggregates/drug effects , Protein Structure, Secondary/drug effects , alpha-Synuclein/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...