Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 10(12)2020 Dec 14.
Article in English | MEDLINE | ID: mdl-33327421

ABSTRACT

Synthetic organic 2D materials are attracting careful attention of researchers due to their excellent functionality in various applications, including storage batteries, catalysis, thermoelectricity, advanced electronics, superconductors, optoelectronics, etc. In this work, thiacalix[4]arene derivatives functionalized by geranyl fragments at the lower rim in cone and 1,3-alternate conformations, that are capable of controlled self-assembly in a 2D nanostructures were synthesized. X-ray diffraction analysis showed the formation of 2D monomolecular-layer nanosheets from synthesized thiacalix[4]arenes, the distance between which depends on the stereoisomer used. It was established by DSC, FSC, and PXRD methods that the obtained macrocycles are capable of forming different crystalline polymorphs, moreover dimethyl sulphoxide (DMSO) is contributing to the formation of a more stable polymorph for cone stereoisomer. The obtained crystalline 2D materials based on synthesized thiacalix[4]arenes can find application in material science and medicine for the development of modern pharmaceuticals and new generation materials.

2.
Nanomaterials (Basel) ; 10(4)2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32316551

ABSTRACT

Controlling the self-assembly of polyfunctional compounds in interpolyelectrolyte aggregates is an extremely challenging task. The use of macrocyclic compounds offers new opportunities in design of a new generation of mixed nanoparticles. This approach allows creating aggregates with multivalent molecular recognition, improved binding efficiency and selectivity. In this paper, we reported a straightforward approach to the synthesis of interpolyelectrolytes by co-assembling of the thiacalix[4]arene with four negatively charged functional groups on the one side of macrocycle, and pillar[5]arene with 10 ammonium groups located on both sides. Nanostructured polyelectrolyte complexes show effective packaging of high-molecular DNA from calf thymus. The interaction of co-interpolyelectrolytes with the DNA is completely different from the interaction of the pillar[5]arene with the DNA. Two different complexes with DNA, i.e., micelleplex- and polyplex-type, were formed. The DNA in both cases preserved its secondary structure in native B form without distorting helicity. The presented approach provides important advantage for the design of effective biomolecular gene delivery systems.

3.
Front Chem ; 7: 554, 2019.
Article in English | MEDLINE | ID: mdl-31428605

ABSTRACT

Products of lactic acid polycondensation (poly- and oligolactic acids) are widely used as packaging materials, drug delivery agents, implants etc. Variety of their applications is caused by a number of practically important properties, e.g., biocompatibility and biodegradability, non-toxicity, and mechanical durability. Modification of these polymers with different additives allows improving their properties and extending future applications. In this manner, stability toward degradation, recognition of some substrates, extended thermal stability etc. can be improved. Macrocyclic compounds are promising candidates as modifiers. They are able to provide polymer materials with additional binding sites, impart certain orientation to spatial arrangement of polymer chains, change hydrophilic-lipophilic balance, and redox properties. The latter one can be used for assembling various electrochemical sensors and biosensors that combine steric discrimination of the analytes caused by oligolactides and highly sensitive response to their quantities caused by redox labels introduced. Different composite materials based on oligolactides as matrices for such redox labels were described in the assemblies of biosensors for drugs, pesticides, and antioxidants detection. In this mini-review, methods for the synthesis of the lactic acid oligomers and those modified with the macrocyclic fragments (porphyrin, cyclodextrin, and cyclophane) have been described. The effects of modifiers on complexation, thermal, and aggregation properties of materials are described. Analytical performance of oligolactide based sensors and biosensors has been considered with particular emphasis to the mechanism of signal generation.

4.
Beilstein J Org Chem ; 13: 1940-1949, 2017.
Article in English | MEDLINE | ID: mdl-29062412

ABSTRACT

New p-tert-butylthiacalix[4]arenes, which are mono-, 1,2-di- and tetrasubstituted at the lower rim containing N-(4'-nitrophenyl)acetamide and N,N-diethylacetamide groups in cone and partial cone conformations have been synthesized. Their complexation ability towards a number of tetrabutylammonium salts n-Bu4NX (X = F-, Cl-, Br-, I-, CH3CO2-, H2PO4-, NO3-) was studied by UV spectroscopy. The effective receptor for the anions studied as well as selective receptors for F-, CH3CO2- and H2PO4- ions, which based on the synthesized thiacalix[4]arenes, have been obtained. It was shown that p-tert-butylthiacalix[4]arene tetrasubstituted at the lower rim by N-(4'-nitrophenyl)acetamide moieties bonded to the anions studied with association constants within the range of 3.55 × 103-7.94 × 105 M-1. Besides, the binding selectivity for F-, Cl-, CH3CO2-, and H2PO4- anions against other anions was in the range of 4.1-223.9. Substituting one or two fragments in the macrocycle with N,N-diethylacetamide groups significantly reduces the complexation ability of the receptor. In contrast to the 1,3-disubstituted macrocycle containing two N-(4'-nitrophenyl)acetamide moieties, the 1,2-disubstituted thiacalix[4]arene, which contains only one such fragment and a N,N-diethylacetamide moiety, selectively binds F- anions.

SELECTION OF CITATIONS
SEARCH DETAIL
...