Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biosensors (Basel) ; 14(2)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38392009

ABSTRACT

This article explores the importance of wearable and remote technologies in healthcare. The focus highlights its potential in continuous monitoring, examines the specificity of the issue, and offers a view of proactive healthcare. Our research describes a wide range of device types and scientific methodologies, starting from traditional chest belts to their modern alternatives and cutting-edge bioamplifiers that distinguish breathing from chest impedance variations. We also investigated innovative technologies such as the monitoring of thorax micromovements based on the principles of seismocardiography, ballistocardiography, remote camera recordings, deployment of integrated optical fibers, or extraction of respiration from cardiovascular variables. Our review is extended to include acoustic methods and breath and blood gas analysis, providing a comprehensive overview of different approaches to respiratory monitoring. The topic of monitoring respiration with wearable and remote electronics is currently the center of attention of researchers, which is also reflected by the growing number of publications. In our manuscript, we offer an overview of the most interesting ones.


Subject(s)
Wearable Electronic Devices , Technology , Respiration , Electronics , Monitoring, Physiologic/methods
2.
Biosensors (Basel) ; 12(4)2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35448277

ABSTRACT

Optical sensors play an increasingly important role in the development of medical diagnostic devices. They can be very widely used to measure the physiology of the human body. Optical methods include PPG, radiation, biochemical, and optical fiber sensors. Optical sensors offer excellent metrological properties, immunity to electromagnetic interference, electrical safety, simple miniaturization, the ability to capture volumes of nanometers, and non-invasive examination. In addition, they are cheap and resistant to water and corrosion. The use of optical sensors can bring better methods of continuous diagnostics in the comfort of the home and the development of telemedicine in the 21st century. This article offers a large overview of optical wearable methods and their modern use with an insight into the future years of technology in this field.


Subject(s)
Telemedicine , Wearable Electronic Devices , Humans , Optical Fibers , Technology
3.
Sensors (Basel) ; 22(2)2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35062487

ABSTRACT

The whole world is currently focused on COVID-19, which causes considerable economic and social damage. The disease is spreading rapidly through the population, and the effort to stop the spread is entirely still failing. In our article, we want to contribute to the improvement of the situation. We propose a tracking system that would identify affected people with greater accuracy than medical staff can. The main goal was to design hardware and construct a device that would track anonymous risky contacts in areas with a highly concentrated population, such as schools, hospitals, large social events, and companies. We have chosen a 2.4 GHz proprietary protocol for contact monitoring and mutual communication of individual devices. The 2.4 GHz proprietary protocol has many advantages such as a low price and higher resistance to interference and thus offers benefits. We conducted a pilot experiment to catch bugs in the system. The device is in the form of a bracelet and captures signals from other bracelets worn at a particular location. In case of contact with an infected person, the alarm is activated. This article describes the concept of the tracking system, the design of the devices, initial tests, and plans for future use.


Subject(s)
COVID-19 , Communication , Hospitals , Humans , Research , SARS-CoV-2
4.
Sensors (Basel) ; 21(10)2021 May 17.
Article in English | MEDLINE | ID: mdl-34067895

ABSTRACT

Many people live under stressful conditions which has an adverse effect on their health. Human stress, especially long-term one, can lead to a serious illness. Therefore, monitoring of human stress influence can be very useful. We can monitor stress in strictly controlled laboratory conditions, but it is time-consuming and does not capture reactions, on everyday stressors or in natural environment using wearable sensors, but with limited accuracy. Therefore, we began to analyze the current state of promising wearable stress-meters and the latest advances in the record of related physiological variables. Based on these results, we present the concept of an accurate, reliable and easier to use telemedicine device for long-term monitoring of people in a real life. In our concept, we ratify with two synchronized devices, one on the finger and the second on the chest. The results will be obtained from several physiological variables including electrodermal activity, heart rate and respiration, body temperature, blood pressure and others. All these variables will be measured using a coherent multi-sensors device. Our goal is to show possibilities and trends towards the production of new telemedicine equipment and thus, opening the door to a widespread application of human stress-meters.


Subject(s)
Telemedicine , Heart Rate , Humans , Monitoring, Physiologic
5.
Sensors (Basel) ; 20(9)2020 May 07.
Article in English | MEDLINE | ID: mdl-32392697

ABSTRACT

Modern Holter devices are very trendy tools used in medicine, research, or sport. They monitor a variety of human physiological or pathophysiological signals. Nowadays, Holter devices have been developing very fast. New innovative products come to the market every day. They have become smaller, smarter, cheaper, have ultra-low power consumption, do not limit everyday life, and allow comfortable measurements of humans to be accomplished in a familiar and natural environment, without extreme fear from doctors. People can be informed about their health and 24/7 monitoring can sometimes easily detect specific diseases, which are normally passed during routine ambulance operation. However, there is a problem with the reliability, quality, and quantity of the collected data. In normal life, there may be a loss of signal recording, abnormal growth of artifacts, etc. At this point, there is a need for multiple sensors capturing single variables in parallel by different sensing methods to complement these methods and diminish the level of artifacts. We can also sense multiple different signals that are complementary and give us a coherent picture. In this article, we describe actual interesting multi-sensor principles on the grounds of our own long-year experiences and many experiments.


Subject(s)
Artifacts , Monitoring, Physiologic , Biosensing Techniques , Humans , Reproducibility of Results
6.
Article in English | MEDLINE | ID: mdl-31546873

ABSTRACT

The paper presents the application of natural materials, especially wood, which are relevant for human well-being in built environments of health, social, and day care facilities. These properties were tested by a complex methodology in a case study in the wooden waiting room at National Oncology Institute in Bratislava. In this space, experimental tests of physiological responses were further executed on 50 volunteers moving in the waiting room for 20 min. In this article, the EEG (electroencephalograph) (four persons) and emotions from the faces of all our volunteers before entering and after a stay in a wooden waiting room were recorded. Specifically, the ECG (electrocardiograph), heart rate (HR), and respiration activity were measured by using our own designed ECG holter (40 persons), and also blood pressure and cortisol levels were observed. The usage of wooden materials verifies their regenerative and positive impact on the human nervous system, through the appealing aesthetics (color, texture, and structures), high contact comfort, pleasant smell, possibility to regulate air humidity, volatile organic compound emissions (VOC-emissions), and acoustic well-being in the space.


Subject(s)
Built Environment , Health , Wood , Adolescent , Adult , Affect , Blood Pressure , Cancer Care Facilities , Electrocardiography , Electroencephalography , Female , Heart Rate , Humans , Hydrocortisone/metabolism , Male , Organic Chemicals/analysis , Wood/chemistry , Wood/microbiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...