Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Int J Pharm ; 642: 123157, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37348574

ABSTRACT

The self-assembly of poly(ethylene glycol)-block-poly(trimethylene carbonate) PEG-b-PTMC copolymers into vesicles, also referred as polymersomes, was evaluated by solvent displacement using microfluidic systems. Two microfluidic chips with different flow regimes (micromixer and Herringbone) were used and the impact of process conditions on vesicle formation was evaluated. As polymersomes are sensitive to osmotic variations, their preparation under conditions allowing their direct use in biological medium is of major importance. We therefore developed a solvent exchange approach from DMSO (Dimethylsulfoxide) to aqueous media with an osmolarity of 300 mOsm L-1, allowing their direct use for biological evaluation. We evidenced that the organic/aqueous solvent ratio does not impact vesicle size, but the total flow rate and copolymer concentration have been observed to influence the size of polymersomes. Finally, nanoparticles with diameters ranging from 76 nm to 224 nm were confirmed to be vesicles through the use of multi-angle light scattering in combination with cryo-TEM (Cryo-Transmission Electron Microscopy) characterization.


Subject(s)
Microfluidics , Nanoparticles , Cryoelectron Microscopy , Microscopy, Electron, Transmission , Solvents , Polyethylene Glycols
2.
Molecules ; 28(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36770629

ABSTRACT

Five different chitosan samples (CHI-1 to CHI-5) from crustacean shells with high deacetylation degrees (>93%) have been deeply characterized from a chemical and physicochemical point of view in order to better understand the impact of some parameters on the bioactivity against two pathogens frequently encountered in vineyards, Plasmopara viticola and Botrytis cinerea. All the samples were analyzed by SEC-MALS, 1H-NMR, elemental analysis, XPS, FTIR, mass spectrometry, pyrolysis, and TGA and their antioxidant activities were measured (DPPH method). Molecular weights were in the order: CHI-4 and CHI-5 (MW >50 kDa) > CHI-3 > CHI-2 and CHI-1 (MW < 20 kDa). CHI-1, CHI-2 and CHI-3 are under their hydrochloride form, CHI-4 and CHI-5 are under their NH2 form, and CHI-3 contains a high amount of a chitosan calcium complex. CHI-2 and CHI-3 showed higher scavenging activity than others. The bioactivity against B. cinerea was molecular weight dependent with an IC50 for CHI-1 = CHI-2 (13 mg/L) ≤ CHI-3 (17 mg/L) < CHI-4 (75 mg/L) < CHI-5 (152 mg/L). The bioactivity on P. viticola zoospores was important, even at a very low concentration for all chitosans (no moving spores between 1 and 0.01 g/L). These results show that even at low concentrations and under hydrochloride form, chitosan could be a good alternative to pesticides.


Subject(s)
Chitosan , Oomycetes , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Chitosan/pharmacology , Chitosan/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Molecular Weight
3.
J Am Chem Soc ; 143(10): 3697-3702, 2021 03 17.
Article in English | MEDLINE | ID: mdl-33651603

ABSTRACT

Cyclic polymers display unique physicochemical and biological properties. However, their development is often limited by their challenging preparation. In this work, we present a simple route to cyclic poly(α-peptoids) from N-alkylated-N-carboxyanhydrides (NNCA) using LiHMDS promoted ring-expansion polymerization (REP) in DMF. This new method allows the unprecedented use of lysine-like monomers in REP to design bioactive macrocycles bearing pharmaceutical potential against Clostridioides difficile, a bacterium responsible for nosocomial infections.


Subject(s)
Peptoids/chemistry , Polymers/chemistry , Trimethylsilyl Compounds/chemistry , Catalysis , Cell Line , Cell Survival/drug effects , Clostridioides difficile/drug effects , Cyclization , Density Functional Theory , Humans , Microbial Sensitivity Tests , Polymerization , Polymers/chemical synthesis , Polymers/pharmacology
4.
Chemistry ; 24(48): 12686-12694, 2018 Aug 27.
Article in English | MEDLINE | ID: mdl-29863753

ABSTRACT

Click ferrocenyl-terminal dentromers, a family of arene-cored dendrimers with triple branching (9-Fc, 27-Fc, 81-Fc, and 243-Fc), reduce AuIII to ferricinium dentromer-stabilized Au nanoparticles (AuNPs). Cyclic voltammetry studies in CH2 Cl2 show reversible CV waves with some adsorption for the 243-Fc dentromer and the number of redox groups found, 255±25, by using the Bard-Anson method, is close to the theoretical number of 243. The dentromers reduce aqueous HAuCl4 to water-soluble ferricinium chloride dentromer-stabilized AuNPs with core sizes between 30 and 47 nm. These triazolylferricinium dentromer-stabilized AuNPs are reduced by cobaltocene to cobalticinium chloride and ferrocene dentromer weakly stabilized AuNPs together with a redshift of the AuNP plasmon. The weakness of the AuNP stabilization is characterized by dentromer extraction with CH2 Cl2 along with irreversible AuNP agglomeration for the 9, 27, and 81-ferrocenyl dentromer, with only the 243-ferrocenyl dentromer-AuNP withstanding this process. Altogether, this demonstrates the electronic switching of the dentromer-mediated AuNP stabilization.

5.
ACS Synth Biol ; 5(7): 607-18, 2016 07 15.
Article in English | MEDLINE | ID: mdl-26186096

ABSTRACT

A synthetic pathway for (d)-xylose assimilation was stoichiometrically evaluated and implemented in Escherichia coli strains. The pathway proceeds via isomerization of (d)-xylose to (d)-xylulose, phosphorylation of (d)-xylulose to obtain (d)-xylulose-1-phosphate (X1P), and aldolytic cleavage of the latter to yield glycolaldehyde and DHAP. Stoichiometric analyses showed that this pathway provides access to ethylene glycol with a theoretical molar yield of 1. Alternatively, both glycolaldehyde and DHAP can be converted to glycolic acid with a theoretical yield that is 20% higher than for the exclusive production of this acid via the glyoxylate shunt. Simultaneous expression of xylulose-1 kinase and X1P aldolase activities, provided by human ketohexokinase-C and human aldolase-B, respectively, restored growth of a (d)-xylulose-5-kinase mutant on xylose. This strain produced ethylene glycol as the major metabolic endproduct. Metabolic engineering provided strains that assimilated the entire C2 fraction into the central metabolism or that produced 4.3 g/L glycolic acid at a molar yield of 0.9 in shake flasks.


Subject(s)
Escherichia coli/metabolism , Metabolic Engineering/methods , Xylose/metabolism , Acetaldehyde/analogs & derivatives , Acetaldehyde/metabolism , Aldehyde-Lyases/genetics , Aldehyde-Lyases/metabolism , Dihydroxyacetone Phosphate/genetics , Dihydroxyacetone Phosphate/metabolism , Enzymes/genetics , Enzymes/metabolism , Escherichia coli/genetics , Glycolates/metabolism , Mutation , Pentosephosphates/genetics , Pentosephosphates/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Xylose/genetics , Xylulose/metabolism
6.
Chemistry ; 21(50): 18177-86, 2015 Dec 07.
Article in English | MEDLINE | ID: mdl-26494439

ABSTRACT

We report the first pentamethylferrocene (PMF) polymers and the redox chemistry of their robust polycationic pentamethylferricenium (PMFium) analogues. The PMF polymers were synthesized by ring-opening metathesis polymerization (ROMP) of a PMF-containing norbornene derivative by using the third-generation Grubbs ruthenium metathesis catalyst. Cyclic voltammetry studies allowed us to determine confidently the number of monomer units in the polymers through the Bard-Anson method. Stoichiometric oxidation by using ferricenium hexafluorophosphate quantitatively and instantaneously provided fully stable (even in aerobic solutions) blue d(5) Fe(III) metallopolymers. Alternatively, oxidation of the PMF-containing polymers was conducted by reactions with Ag(I) or Au(III) , to give PMFium polymer-embedded Ag and Au nanoparticles (NPs). In the presence of I2 , oxidation by using Ag(I) gave polymer-embedded Ag/AgI NPs and AgNPs at the surface of AgI NPs. Oxidation by using Au(III) also produced an Au(I) intermediate that was trapped and characterized. Engineered single-electron transfer reactions of these redox-robust nanomaterial precursors appear to be a new way to control their formation, size, and environment in a supramolecular way.

7.
Microb Cell Fact ; 14: 127, 2015 Sep 04.
Article in English | MEDLINE | ID: mdl-26336892

ABSTRACT

BACKGROUND: Ethylene glycol (EG) is a bulk chemical that is mainly used as an anti-freezing agent and a raw material in the synthesis of plastics. Production of commercial EG currently exclusively relies on chemical synthesis using fossil resources. Biochemical production of ethylene glycol from renewable resources may be more sustainable. RESULTS: Herein, a synthetic pathway is described that produces EG in Escherichia coli through the action of (D)-xylose isomerase, (D)-xylulose-1-kinase, (D)-xylulose-1-phosphate aldolase, and glycolaldehyde reductase. These reactions were successively catalyzed by the endogenous xylose isomerase (XylA), the heterologously expressed human hexokinase (Khk-C) and aldolase (Aldo-B), and an endogenous glycolaldehyde reductase activity, respectively, which we showed to be encoded by yqhD. The production strain was optimized by deleting the genes encoding for (D)-xylulose-5 kinase (xylB) and glycolaldehyde dehydrogenase (aldA), and by overexpressing the candidate glycolaldehyde reductases YqhD, GldA, and FucO. The strain overproducing FucO was the best EG producer reaching a molar yield of 0.94 in shake flasks, and accumulating 20 g/L EG with a molar yield and productivity of 0.91 and 0.37 g/(L.h), respectively, in a controlled bioreactor under aerobic conditions. CONCLUSIONS: We have demonstrated the feasibility to produce EG from (D)-xylose via a synthetic pathway in E. coli at approximately 90 % of the theoretical yield.


Subject(s)
Escherichia coli/metabolism , Ethylene Glycol/metabolism , Metabolic Engineering/methods , Metabolic Networks and Pathways , Xylose/metabolism , Bioreactors
8.
FEMS Yeast Res ; 14(6): 933-47, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25041403

ABSTRACT

A reliable method to determine cell wall polysaccharides composition in yeast is presented, which combines acid and enzymatic hydrolysis. Sulphuric acid treatment is used to determine mannans, whereas specific hydrolytic enzymes are employed in a two sequential steps to quantify chitin and the proportion of ß-(1,3) and ß-(1,6)-glucan in the total ß-glucan of the cell wall. In the first step, chitin and ß-(1,3)-glucan were hydrolysed into their corresponding monomers N-acetylglucosamine and glucose, respectively, by the combined action of a chitinase from Streptomyces griseus and a pure preparation of endo/exo-ß-(1,3)-glucanase from Trichoderma species. This step was followed by addition of recombinant endo-ß-(1,6)-glucanase from Trichoderma harzianum with ß-glucosidase from Aspergillus niger to hydrolyse the remaining ß-glucan. This latter component corresponded to a highly branched ß-(1,6)-glucan that contained about 75-80% of linear ß-(1,6)-glucose linked units as deduced from periodate oxidation. We validated this novel method by showing that the content of ß-(1,3), ß-(1,6)-glucan or chitin was dramatically decreased in yeast mutants defective in the biosynthesis of these cell wall components. Moreover, we found that heat shock at 42 °C in Saccharomyces cerevisiae and treatment of this yeast species and Candida albicans with the antifungal drug caspofungin resulted in 2- to 3-fold increase of chitin and in a reduction of ß-(1,3)-glucan accompanied by an increase of ß-(1,6)-glucan, whereas ethanol stress had apparently no effect on yeast cell wall composition.


Subject(s)
Cell Wall/chemistry , Fungal Polysaccharides/chemistry , Yeasts/chemistry , Chitin/chemistry , Glucans/chemistry , Hydrolysis , Mutation , Reproducibility of Results , Stress, Physiological , Yeasts/genetics , Yeasts/metabolism
9.
Biochem J ; 454(2): 227-37, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23763276

ABSTRACT

In Saccharomyces cerevisiae, synthesis of T6P (trehalose 6-phosphate) is essential for growth on most fermentable carbon sources. In the present study, the metabolic response to glucose was analysed in mutants with different capacities to accumulate T6P. A mutant carrying a deletion in the T6P synthase encoding gene, TPS1, which had no measurable T6P, exhibited impaired ethanol production, showed diminished plasma membrane H⁺-ATPase activation, and became rapidly depleted of nearly all adenine nucleotides which were irreversibly converted into inosine. Deletion of the AMP deaminase encoding gene, AMD1, in the tps1 strain prevented inosine formation, but did not rescue energy balance or growth on glucose. Neither the 90%-reduced T6P content observed in a tps1 mutant expressing the Tps1 protein from Yarrowia lipolytica, nor the hyperaccumulation of T6P in the tps2 mutant had significant effects on fermentation rates, growth on fermentable carbon sources or plasma membrane H⁺-ATPase activation. However, intracellular metabolite dynamics and pH homoeostasis were strongly affected by changes in T6P concentrations. Hyperaccumulation of T6P in the tps2 mutant caused an increase in cytosolic pH and strongly reduced growth rates on non-fermentable carbon sources, emphasizing the crucial role of the trehalose pathway in the regulation of respiratory and fermentative metabolism.


Subject(s)
AMP Deaminase/metabolism , Glucosyltransferases/metabolism , Mutation , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Sugar Phosphates/metabolism , Trehalose/analogs & derivatives , AMP Deaminase/genetics , Adenine Nucleotides/metabolism , Cell Membrane/enzymology , Cell Membrane/metabolism , Down-Regulation , Ethanol/metabolism , Fermentation , Fungal Proteins/genetics , Fungal Proteins/metabolism , Glucose/metabolism , Glucosyltransferases/genetics , Glycolysis , Hydrogen-Ion Concentration , Inosine/metabolism , Isoenzymes/genetics , Isoenzymes/metabolism , Proton-Translocating ATPases/metabolism , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/genetics , Trehalose/metabolism , Yarrowia/enzymology
10.
FEBS Lett ; 586(23): 4114-8, 2012 Nov 30.
Article in English | MEDLINE | ID: mdl-23103740

ABSTRACT

The phosphoglucomutases (PGM) Pgm1, Pgm2, and Pgm3 of the yeast Saccharomyces cerevisiae were tested for their ability to interconvert ribose-1-phosphate and ribose-5-phosphate. The purified proteins were studied in vitro with regard to their kinetic properties on glucose-1-phosphate and ribose-1-phosphate. All tested enzymes were active on both substrates with Pgm1 exhibiting only residual activity on ribose-1-phosphate. The Pgm2 and Pgm3 proteins had almost equal kinetic properties on ribose-1-phosphate, but Pgm2 had a 2000 times higher preference for glucose-1-phosphate when compared to Pgm3. The in vivo function of the PGMs was characterized by monitoring ribose-1-phosphate kinetics following a perturbation of the purine nucleotide balance. Only mutants with a deletion of PGM3 hyper-accumulated ribose-1-phosphate. We conclude that Pgm3 functions as the major phosphoribomutase in vivo.


Subject(s)
Phosphoglucomutase/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Glucosephosphates/metabolism , Phosphoglucomutase/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...