Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Toxicol Sci ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38749002

ABSTRACT

Recent studies have identified exposure to environmental levels of ozone as a risk factor for the development of acute respiratory distress syndrome (ARDS), a severe form of acute lung injury (ALI) that can develop in humans with sepsis. The aim of this study was to develop a murine model of ALI to mechanistically explore the impact of ozone exposure on ARDS development. Mice were exposed to ozone (0.8 ppm, 3 hr) or air control followed 24 hr later by intravenous administration of 3 mg/kg lipopolysaccharide (LPS) or PBS. Exposure of mice to ozone + LPS caused alveolar hyperplasia; increased BAL levels of albumin, IgM, phospholipids, and proinflammatory mediators including surfactant protein D and soluble receptor for advanced glycation end products were also detected in BAL, along with markers of oxidative and nitrosative stress. Administration of ozone + LPS resulted in an increase in neutrophils and anti-inflammatory macrophages in the lung, with no effects on proinflammatory macrophages. Conversely, numbers of resident alveolar macrophages decreased after ozone + LPS; however, expression of Nos2, Arg1, Cxcl1, Cxcl2, Ccl2 by these cells increased, indicating that they are activated. These findings demonstrate that ozone sensitizes the lung to respond to endotoxin, resulting in ALI, oxidative stress and exacerbated pulmonary inflammation, and provide support for the epidemiologic association between ozone exposure and ARDS incidence.

2.
Toxicol Appl Pharmacol ; 485: 116908, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38513841

ABSTRACT

Nitrogen mustard (NM) is a toxic vesicant that causes acute injury to the respiratory tract. This is accompanied by an accumulation of activated macrophages in the lung and oxidative stress which have been implicated in tissue injury. In these studies, we analyzed the effects of N-acetylcysteine (NAC), an inhibitor of oxidative stress and inflammation on NM-induced lung injury, macrophage activation and bioenergetics. Treatment of rats with NAC (150 mg/kg, i.p., daily) beginning 30 min after administration of NM (0.125 mg/kg, i.t.) reduced histopathologic alterations in the lung including alveolar interstitial thickening, blood vessel hemorrhage, fibrin deposition, alveolar inflammation, and bronchiolization of alveolar walls within 3 d of exposure; damage to the alveolar-epithelial barrier, measured by bronchoalveolar lavage fluid protein and cells, was also reduced by NAC, along with oxidative stress as measured by heme oxygenase (HO)-1 and Ym-1 expression in the lung. Treatment of rats with NAC attenuated the accumulation of macrophages in the lung expressing proinflammatory genes including Ptgs2, Nos2, Il-6 and Il-12; macrophages expressing inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and tumor necrosis factor (TNF)α protein were also reduced in histologic sections. Conversely, NAC had no effect on macrophages expressing the anti-inflammatory proteins arginase-1 or mannose receptor, or on NM-induced increases in matrix metalloproteinase (MMP)-9 or proliferating cell nuclear antigen (PCNA), markers of tissue repair. Following NM exposure, lung macrophage basal and maximal glycolytic activity increased, while basal respiration decreased indicating greater reliance on glycolysis to generate ATP. NAC increased both glycolysis and oxidative phosphorylation. Additionally, in macrophages from both control and NM treated animals, NAC treatment resulted in increased S-nitrosylation of ATP synthase, protecting the enzyme from oxidative damage. Taken together, these data suggest that alterations in NM-induced macrophage activation and bioenergetics contribute to the efficacy of NAC in mitigating lung injury.


Subject(s)
Acetylcysteine , Energy Metabolism , Lung Injury , Mechlorethamine , Oxidative Stress , Animals , Oxidative Stress/drug effects , Acetylcysteine/pharmacology , Mechlorethamine/toxicity , Male , Energy Metabolism/drug effects , Rats , Lung Injury/chemically induced , Lung Injury/metabolism , Lung Injury/pathology , Rats, Sprague-Dawley , Lung/drug effects , Lung/metabolism , Lung/pathology , Macrophages/drug effects , Macrophages/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/metabolism , Chemical Warfare Agents/toxicity
3.
J Pharmacol Exp Ther ; 388(2): 586-595, 2024 01 17.
Article in English | MEDLINE | ID: mdl-37188530

ABSTRACT

Nitrogen mustard (NM) is a cytotoxic vesicant known to cause pulmonary injury that can progress to fibrosis. NM toxicity is associated with an influx of inflammatory macrophages in the lung. Farnesoid X receptor (FXR) is a nuclear receptor involved in bile acid and lipid homeostasis that has anti-inflammatory activity. In these studies, we analyzed the effects of FXR activation on lung injury, oxidative stress, and fibrosis induced by NM. Male Wistar rats were exposed to phosphate-buffered saline (vehicle control) or NM (0.125 mg/kg) by intratracheal Penncentury-MicroSprayer aerosolization; this was followed by treatment with the FXR synthetic agonist, obeticholic acid (OCA, 15 mg/kg), or vehicle control (0.13-0.18 g peanut butter) 2 hours later and then once per day, 5 days per week thereafter for 28 days. NM caused histopathological changes in the lung, including epithelial thickening, alveolar circularization, and pulmonary edema. Picrosirius red staining and lung hydroxyproline content were increased, indicative of fibrosis; foamy lipid-laden macrophages were also identified in the lung. This was associated with aberrations in pulmonary function, including increases in resistance and hysteresis. Following NM exposure, lung expression of HO-1 and iNOS, and the ratio of nitrates/nitrites in bronchoalveolar lavage fluid (BAL), markers of oxidative stress increased, along with BAL levels of inflammatory proteins, fibrinogen, and sRAGE. Administration of OCA attenuated NM-induced histopathology, oxidative stress, inflammation, and altered lung function. These findings demonstrate that FXR plays a role in limiting NM-induced lung injury and chronic disease, suggesting that activating FXR may represent an effective approach to limiting NM-induced toxicity. SIGNIFICANCE STATEMENT: In this study, the role of farnesoid-X-receptor (FXR) in mustard vesicant-induced pulmonary toxicity was analyzed using nitrogen mustard (NM) as a model. This study's findings that administration of obeticholic acid, an FXR agonist, to rats reduces NM-induced pulmonary injury, oxidative stress, and fibrosis provide novel mechanistic insights into vesicant toxicity, which may be useful in the development of efficacious therapeutics.


Subject(s)
Chenodeoxycholic Acid/analogs & derivatives , Lung Injury , Mechlorethamine , Rats , Male , Animals , Mechlorethamine/toxicity , Irritants/adverse effects , Rats, Wistar , Lung , Fibrosis , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/pathology , Lung Injury/metabolism , Oxidative Stress , Lipids
4.
Part Fibre Toxicol ; 20(1): 16, 2023 04 23.
Article in English | MEDLINE | ID: mdl-37088832

ABSTRACT

BACKGROUND: Exposure to micro- and nanoplastic particles (MNPs) in humans is being identified in both the indoor and outdoor environment. Detection of these materials in the air has made inhalation exposure to MNPs a major cause for concern. One type of plastic polymer found in indoor and outdoor settings is polyamide, often referred to as nylon. Inhalation of combustion-derived, metallic, and carbonaceous aerosols generate pulmonary inflammation, cardiovascular dysfunction, and systemic inflammation. Additionally, due to the additives present in plastics, MNPs may act as endocrine disruptors. Currently there is limited knowledge on potential health effects caused by polyamide or general MNP inhalation. OBJECTIVE: The purpose of this study is to assess the toxicological consequences of a single inhalation exposure of female rats to polyamide MNP during estrus by means of aerosolization of MNP. METHODS: Bulk polyamide powder (i.e., nylon) served as a representative MNP. Polyamide aerosolization was characterized using particle sizers, cascade impactors, and aerosol samplers. Multiple-Path Particle Dosimetry (MPPD) modeling was used to evaluate pulmonary deposition of MNPs. Pulmonary inflammation was assessed by bronchoalveolar lavage (BAL) cell content and H&E-stained tissue sections. Mean arterial pressure (MAP), wire myography of the aorta and uterine artery, and pressure myography of the radial artery was used to assess cardiovascular function. Systemic inflammation and endocrine disruption were quantified by measurement of proinflammatory cytokines and reproductive hormones. RESULTS: Our aerosolization exposure platform was found to generate particles within the micro- and nano-size ranges (thereby constituting MNPs). Inhaled particles were predicted to deposit in all regions of the lung; no overt pulmonary inflammation was observed. Conversely, increased blood pressure and impaired dilation in the uterine vasculature was noted while aortic vascular reactivity was unaffected. Inhalation of MNPs resulted in systemic inflammation as measured by increased plasma levels of IL-6. Decreased levels of 17ß-estradiol were also observed suggesting that MNPs have endocrine disrupting activity. CONCLUSIONS: These data demonstrate aerosolization of MNPs in our inhalation exposure platform. Inhaled MNP aerosols were found to alter inflammatory, cardiovascular, and endocrine activity. These novel findings will contribute to a better understanding of inhaled plastic particle toxicity.


Subject(s)
Nylons , Pneumonia , Humans , Rats , Female , Animals , Rats, Sprague-Dawley , Nylons/toxicity , Microplastics , Inhalation Exposure/adverse effects , Inhalation Exposure/analysis , Dilatation , Respiratory Aerosols and Droplets , Pneumonia/chemically induced , Lung , Inflammation/chemically induced , Particle Size , Bronchoalveolar Lavage Fluid
5.
Toxicol Appl Pharmacol ; 461: 116388, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36690086

ABSTRACT

Chlorine (Cl2) gas is a highly toxic and oxidizing irritant that causes life-threatening lung injuries. Herein, we investigated the impact of Cl2-induced injury and oxidative stress on lung macrophage phenotype and function. Spontaneously breathing male C57BL/6J mice were exposed to air or Cl2 (300 ppm, 25 min) in a whole-body exposure chamber. Bronchoalveolar lavage (BAL) fluid and cells, and lung tissue were collected 24 h later and analyzed for markers of injury, oxidative stress and macrophage activation. Exposure of mice to Cl2 resulted in increases in numbers of BAL cells and levels of IgM, total protein, and fibrinogen, indicating alveolar epithelial barrier dysfunction and inflammation. BAL levels of inflammatory proteins including surfactant protein (SP)-D, soluble receptor for glycation end product (sRAGE) and matrix metalloproteinase (MMP)-9 were also increased. Cl2 inhalation resulted in upregulation of phospho-histone H2A.X, a marker of double-strand DNA breaks in the bronchiolar epithelium and alveolar cells; oxidative stress proteins, heme oxygenase (HO)-1 and catalase were also upregulated. Flow cytometric analysis of BAL cells revealed increases in proinflammatory macrophages following Cl2 exposure, whereas numbers of resident and antiinflammatory macrophages were not altered. This was associated with increases in numbers of macrophages expressing cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS), markers of proinflammatory activation, with no effect on mannose receptor (MR) or Ym-1 expression, markers of antiinflammatory activation. Metabolic analysis of lung cells showed increases in glycolytic activity following Cl2 exposure in line with proinflammatory macrophage activation. Mechanistic understanding of Cl2-induced injury will be useful in the identification of efficacious countermeasures for mitigating morbidity and mortality of this highly toxic gas.


Subject(s)
Chlorine , Lung Injury , Mice , Male , Animals , Chlorine/toxicity , Mice, Inbred C57BL , Lung , Macrophages , Bronchoalveolar Lavage Fluid , Oxidative Stress , Energy Metabolism
6.
Toxicol Appl Pharmacol ; 456: 116257, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36174670

ABSTRACT

Nitrogen mustard (NM) is a cytotoxic vesicant known to cause acute lung injury which progresses to fibrosis. Alveolar Type II cells are primarily responsible for surfactant production; they also play a key role in lung repair following injury. Herein, we assessed the effects of NM on Type II cell activity. Male Wistar rats were administered NM (0.125 mg/kg) or PBS control intratracheally. Type II cells, lung tissue and BAL were collected 3 d later. NM exposure resulted in double strand DNA breaks in Type II cells, as assessed by expression of γH2AX; this was associated with decreased expression of the DNA repair protein, PARP1. Expression of HO-1 was upregulated and nitrotyrosine residues were noted in Type II cells after NM exposure indicating oxidative stress. NM also caused alterations in Type II cell energy metabolism; thus, both glycolysis and oxidative phosphorylation were reduced; there was also a shift from a reliance on oxidative phosphorylation to glycolysis for ATP production. This was associated with increased expression of pro-apoptotic proteins activated caspase-3 and -9, and decreases in survival proteins, ß-catenin, Nur77, HMGB1 and SOCS2. Intracellular signaling molecules important in Type II cell activity including PI3K, Akt2, phospho-p38 MAPK and phospho-ERK were reduced after NM exposure. This was correlated with dysregulation of surfactant protein production and impaired pulmonary functioning. These data demonstrate that Type II cells are targets of NM-induced DNA damage and oxidative stress. Impaired functioning of these cells may contribute to pulmonary toxicity caused by mustards.


Subject(s)
Acute Lung Injury , Mechlorethamine , Rats , Male , Animals , Mechlorethamine/toxicity , Rats, Wistar , Acute Lung Injury/chemically induced , Alveolar Epithelial Cells , Oxidative Stress , Energy Metabolism , Surface-Active Agents/adverse effects
7.
Toxicol Appl Pharmacol ; 387: 114798, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31678244

ABSTRACT

Nitrogen mustard (NM) is a cytotoxic vesicant known to cause acute lung injury which progresses to fibrosis. Herein, we developed a murine model of NM-induced pulmonary toxicity with the goal of assessing inflammatory mechanisms of injury. C57BL/6J mice were euthanized 1-28 d following intratracheal exposure to NM (0.08 mg/kg) or PBS control. NM caused progressive alveolar epithelial thickening, perivascular inflammation, bronchiolar epithelial hyperplasia, interstitial fibroplasia and fibrosis, peaking 14 d post exposure. Enlarged foamy macrophages were also observed in the lung 14 d post NM, along with increased numbers of microparticles in bronchoalveolar lavage fluid (BAL). Following NM exposure, rapid and prolonged increases in BAL cells, protein, total phospholipids and surfactant protein (SP)-D were also detected. Flow cytometric analysis showed that CD11b+Ly6G-F4/80+Ly6Chi proinflammatory macrophages accumulated in the lung after NM, peaking at 3 d. This was associated with macrophage expression of HMGB1 and TNFα in histologic sections. CD11b+Ly6G-F4/80+Ly6Clo anti-inflammatory/pro-fibrotic macrophages also increased in the lung after NM peaking at 14 d, a time coordinate with increases in TGFß expression and fibrosis. NM exposure also resulted in alterations in pulmonary mechanics including increases in tissue elastance and decreases in compliance and static compliance, most prominently at 14 d. These findings demonstrate that NM induces structural and inflammatory changes in the lung that correlate with aberrations in pulmonary function. This mouse model will be useful for mechanistic studies of mustard lung injury and for assessing potential countermeasures.


Subject(s)
Acute Lung Injury/chemically induced , Chemical Warfare Agents/toxicity , Lung/pathology , Mechlorethamine/toxicity , Acute Lung Injury/immunology , Acute Lung Injury/pathology , Animals , Disease Models, Animal , Feasibility Studies , Female , Fibrosis , Humans , Lung/drug effects , Macrophages/drug effects , Macrophages/immunology , Male , Mice , Oxidative Stress/drug effects
8.
Article in English | MEDLINE | ID: mdl-30845693

ABSTRACT

Sarcoid-like granulomatous diseases (SGD) have been previously identified in cohorts of World Trade Center (WTC) dust-exposed individuals. In the present studies, we analyzed lung and/or lymph node biopsies from patients referred to our clinic with suspected WTC dust-induced lung disease to evaluate potential pathophysiologic mechanisms. Histologic sections of lung and/or lymph node samples were analyzed for markers of injury, oxidative stress, inflammation, fibrosis, and epigenetic modifications. Out of seven patients examined, we diagnosed four with SGD and two with pulmonary fibrosis; one was diagnosed later with SGD at another medical facility. Patients with SGD were predominantly white, obese men, who were less than 50 years old and never smoked. Cytochrome b5, cytokeratin 17, heme oxygenase-1, lipocalin-2, inducible nitric oxide synthase, cyclooxygenase 2, tumor necrosis factor α, ADP-ribosylation factor-like GTPase 11, mannose receptor-1, galectin-3, transforming growth factor ß, histone-3 and methylated histone-3 were identified in lung and lymph nodes at varying levels in all samples examined. Three of the biopsy samples with granulomas displayed peri-granulomatous fibrosis. These findings are important and suggest the potential of WTC dust-induced fibrotic sarcoid. It is likely that patient demographics and/or genetic factors influence the response to WTC dust injury and that these contribute to different pathological outcomes.


Subject(s)
Occupational Exposure , Sarcoidosis/etiology , September 11 Terrorist Attacks , Adult , Dust , Female , Humans , Male , Middle Aged
9.
Toxicol Sci ; 166(1): 108-122, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30060251

ABSTRACT

Nitrogen mustard (NM) is a vesicant known to cause acute pulmonary injury which progresses to fibrosis. Macrophages contribute to both of these pathologies. Surfactant protein (SP)-D is a pulmonary collectin that suppresses lung macrophage activity. Herein, we analyzed the effects of loss of SP-D on NM-induced macrophage activation and lung toxicity. Wild-type (WT) and SP-D-/- mice were treated intratracheally with PBS or NM (0.08 mg/kg). Bronchoalveolar lavage (BAL) fluid and tissue were collected 14 days later. In WT mice, NM caused an increase in total SP-D levels in BAL; multiple lower molecular weight forms of SP-D were also identified, consistent with lung injury and oxidative stress. Flow cytometric analysis of BAL cells from NM treated WT mice revealed the presence of proinflammatory and anti-inflammatory macrophages. Whereas loss of SP-D had no effect on numbers of these cells, their activation state, as measured by proinflammatory (iNOS, MMP-9), and anti-inflammatory (MR-1, Ym-1) protein expression, was amplified. Loss of SP-D also exacerbated NM-induced oxidative stress and alveolar epithelial injury, as reflected by increases in heme oxygenase-1 expression, and BAL cell and protein content. This was correlated with alterations in pulmonary mechanics. In NM-treated SP-D-/-, but not WT mice, there was evidence of edema, epithelial hypertrophy and hyperplasia, bronchiectasis, and fibrosis, as well as increases in BAL phospholipid content. These data demonstrate that activated lung macrophages play a role in NM-induced lung injury and oxidative stress. Elucidating mechanisms regulating macrophage activity may be important in developing therapeutics to treat mustard-induced lung injury.


Subject(s)
Lung Injury/chemically induced , Macrophages, Alveolar/drug effects , Mechlorethamine/toxicity , Oxidative Stress/drug effects , Pulmonary Surfactant-Associated Protein D/metabolism , Animals , Bronchoalveolar Lavage Fluid/cytology , Female , Lung Injury/metabolism , Lung Injury/pathology , Macrophage Activation/drug effects , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/pathology , Male , Mice , Mice, Inbred C57BL
10.
Exp Mol Pathol ; 102(1): 50-58, 2017 02.
Article in English | MEDLINE | ID: mdl-27986442

ABSTRACT

Exposure to World Trade Center (WTC) dust has been linked to respiratory disease in humans. In the present studies we developed a rodent model of WTC dust exposure to analyze lung oxidative stress and inflammation, with the goal of elucidating potential epigenetic mechanisms underlying these responses. Exposure of mice to WTC dust (20µg, i.t.) was associated with upregulation of heme oxygenase-1 and cyclooxygenase-2 within 3days, a response which persisted for at least 21days. Whereas matrix metalloproteinase was upregulated 7days post-WTC dust exposure, IL-6RA1 was increased at 21days; conversely, expression of mannose receptor, a scavenger receptor important in particle clearance, decreased. After WTC dust exposure, increases in methylation of histone H3 lysine K4 at 3days, lysine K27 at 7days and lysine K36, were observed in the lung, along with hypermethylation of Line-1 element at 21days. Alterations in pulmonary mechanics were also observed following WTC dust exposure. Thus, 3days post-exposure, lung resistance and tissue damping were decreased. In contrast at 21days, lung resistance, central airway resistance, tissue damping and tissue elastance were increased. These data demonstrate that WTC dust-induced inflammation and oxidative stress are associated with epigenetic modifications in the lung and altered pulmonary mechanics. These changes may contribute to the development of WTC dust pathologies.


Subject(s)
Air Pollutants/toxicity , Dust , Epigenesis, Genetic , Inflammation/diagnosis , Oxidative Stress , Animals , Blotting, Western , Cyclooxygenase 2/metabolism , Cytokines/genetics , DNA Methylation/drug effects , Female , Gene Expression/drug effects , Heme Oxygenase-1/metabolism , Histones/metabolism , Humans , Immunohistochemistry , Inflammation/etiology , Inflammation/genetics , Inhalation Exposure , Lung/drug effects , Lung/metabolism , Lung/physiopathology , Lysine/metabolism , Matrix Metalloproteinases/metabolism , Methylation/drug effects , Mice, Inbred C57BL , Reverse Transcriptase Polymerase Chain Reaction , September 11 Terrorist Attacks , Up-Regulation/drug effects
11.
Ann N Y Acad Sci ; 1374(1): 168-75, 2016 06.
Article in English | MEDLINE | ID: mdl-27351588

ABSTRACT

Sulfur mustard (SM) and nitrogen mustard (NM) are cytotoxic alkylating agents that cause severe and progressive injury to the respiratory tract, resulting in significant morbidity and mortality. Evidence suggests that macrophages and the inflammatory mediators they release play roles in both acute and long-term pulmonary injuries caused by mustards. In this article, we review the pathogenic effects of SM and NM on the respiratory tract and potential inflammatory mechanisms contributing to this activity.


Subject(s)
Inflammation Mediators/metabolism , Irritants/toxicity , Lung Injury/chemically induced , Lung Injury/pathology , Macrophages/pathology , Mustard Gas/toxicity , Animals , Humans , Lung/drug effects , Lung/pathology , Macrophages/drug effects , Macrophages/metabolism
12.
Toxicol Lett ; 244: 2-7, 2016 Feb 26.
Article in English | MEDLINE | ID: mdl-26478570

ABSTRACT

Exposure of humans and animals to vesicants, including sulfur mustard (SM) and nitrogen mustard (NM), causes severe and debilitating damage to the respiratory tract. Both acute and long term pathological consequences are observed in the lung following a single exposure to these vesicants. Evidence from our laboratories and others suggest that macrophages and the inflammatory mediators they release play an important role in mustard-induced lung injury. In this paper, the pathogenic effects of SM and NM on the lung are reviewed, along with the potential role of inflammatory macrophages and mediators they release in mustard-induced pulmonary toxicity.


Subject(s)
Lung Injury/chemically induced , Lung/drug effects , Nitrogen Mustard Compounds/toxicity , Pneumonia/chemically induced , Animals , Antidotes/therapeutic use , Disease Models, Animal , Humans , Inflammation Mediators/metabolism , Inhalation Exposure , Lung/metabolism , Lung/pathology , Lung/physiopathology , Lung Injury/drug therapy , Lung Injury/metabolism , Lung Injury/pathology , Lung Injury/physiopathology , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/metabolism , Pneumonia/drug therapy , Pneumonia/metabolism , Pneumonia/pathology , Pneumonia/physiopathology , Signal Transduction/drug effects
13.
Toxicol Sci ; 148(1): 71-88, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26243812

ABSTRACT

Nitrogen mustard (NM) is a bifunctional alkylating agent that causes acute injury to the lung that progresses to fibrosis. This is accompanied by a prominent infiltration of macrophages into the lung and upregulation of proinflammatory/profibrotic cytokines including tumor necrosis factor (TNF)α. In these studies, we analyzed the ability of anti-TNFα antibody to mitigate NM-induced lung injury, inflammation, and fibrosis. Treatment of rats with anti-TNFα antibody (15 mg/kg, iv, every 9 days) beginning 30 min after intratracheal administration of NM (0.125 mg/kg) reduced progressive histopathologic alterations in the lung including perivascular and peribronchial edema, macrophage/monocyte infiltration, interstitial thickening, bronchiolization of alveolar walls, fibrin deposition, emphysema, and fibrosis. NM-induced damage to the alveolar-epithelial barrier, measured by bronchoalveolar lavage (BAL) protein and cell content, was also reduced by anti-TNFα antibody, along with expression of the oxidative stress marker, heme oxygenase-1. Whereas the accumulation of proinflammatory/cytotoxic M1 macrophages in the lung in response to NM was suppressed by anti-TNFα antibody, anti-inflammatory/profibrotic M2 macrophages were increased or unchanged. Treatment of rats with anti-TNFα antibody also reduced NM-induced increases in expression of the profibrotic mediator, transforming growth factor-ß. This was associated with a reduction in NM-induced collagen deposition in the lung. These data suggest that inhibiting TNFα may represent an efficacious approach to mitigating lung injury induced by mustards.


Subject(s)
Alkylating Agents/toxicity , Antibodies, Monoclonal/therapeutic use , Lung/drug effects , Mechlorethamine/toxicity , Pulmonary Emphysema/drug therapy , Pulmonary Fibrosis/prevention & control , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Alkylating Agents/chemistry , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/metabolism , Biomarkers/metabolism , Chemical Warfare Agents/chemistry , Chemical Warfare Agents/toxicity , Disease Progression , Immunoglobulin G/genetics , Immunoglobulin G/metabolism , Immunoglobulin G/therapeutic use , Lung/immunology , Lung/pathology , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , Male , Mechlorethamine/antagonists & inhibitors , Mice , Molecular Targeted Therapy , Oxidative Stress/drug effects , Pulmonary Emphysema/chemically induced , Pulmonary Emphysema/pathology , Pulmonary Emphysema/physiopathology , Pulmonary Fibrosis/etiology , Pulmonary Fibrosis/immunology , Rats, Wistar , Recombinant Proteins/metabolism , Recombinant Proteins/therapeutic use , Respiratory Mucosa/drug effects , Respiratory Mucosa/immunology , Respiratory Mucosa/pathology , Tumor Necrosis Factor-alpha/metabolism
14.
Toxicol Appl Pharmacol ; 284(2): 236-45, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25724551

ABSTRACT

Macrophages play a dual role in ozone toxicity, contributing to both pro- and anti-inflammatory processes. Galectin-3 (Gal-3) is a lectin known to regulate macrophage activity. Herein, we analyzed the role of Gal-3 in the response of lung macrophages to ozone. Bronchoalveolar lavage (BAL) and lung tissue were collected 24-72h after exposure (3h) of WT and Gal-3(-/-) mice to air or 0.8ppm ozone. In WT mice, ozone inhalation resulted in increased numbers of proinflammatory (Gal-3(+), iNOS(+)) and anti-inflammatory (MR-1(+)) macrophages in the lungs. While accumulation of iNOS(+) macrophages was attenuated in Gal-3(-/-) mice, increased numbers of enlarged MR-1(+) macrophages were noted. This correlated with increased numbers of macrophages in BAL. Flow cytometric analysis showed that these cells were CD11b(+) and consisted mainly (>97%) of mature (F4/80(+)CD11c(+)) proinflammatory (Ly6GLy6C(hi)) and anti-inflammatory (Ly6GLy6C(lo)) macrophages. Increases in both macrophage subpopulations were observed following ozone inhalation. Loss of Gal-3 resulted in a decrease in Ly6C(hi) macrophages, with no effect on Ly6C(lo) macrophages. CD11b(+)Ly6G(+)Ly6C(+) granulocytic (G) and monocytic (M) myeloid derived suppressor cells (MDSC) were also identified in the lung after ozone. In Gal-3(-/-) mice, the response of G-MDSC to ozone was attenuated, while the response of M-MDSC was heightened. Changes in inflammatory cell populations in the lung of ozone treated Gal-3(-/-) mice were correlated with reduced tissue injury as measured by cytochrome b5 expression. These data demonstrate that Gal-3 plays a role in promoting proinflammatory macrophage accumulation and toxicity in the lung following ozone exposure.


Subject(s)
Galectin 3/metabolism , Galectins/metabolism , Lung Injury/chemically induced , Lung Injury/metabolism , Ozone/toxicity , Pneumonia/chemically induced , Pneumonia/metabolism , Animals , Female , Galactosides/metabolism , Lung/drug effects , Lung/metabolism , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/metabolism , Mice , Mice, Inbred C57BL , Nitric Oxide Synthase Type II/metabolism
15.
Exp Mol Pathol ; 97(1): 89-98, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24886962

ABSTRACT

Nitrogen mustard (NM) is a toxic alkylating agent that causes damage to the respiratory tract. Evidence suggests that macrophages and inflammatory mediators including tumor necrosis factor (TNF)α contribute to pulmonary injury. Pentoxifylline is a TNFα inhibitor known to suppress inflammation. In these studies, we analyzed the ability of pentoxifylline to mitigate NM-induced lung injury and inflammation. Exposure of male Wistar rats (150-174 g; 8-10 weeks) to NM (0.125 mg/kg, i.t.) resulted in severe histopathological changes in the lung within 3d of exposure, along with increases in bronchoalveolar lavage (BAL) cell number and protein, indicating inflammation and alveolar-epithelial barrier dysfunction. This was associated with increases in oxidative stress proteins including lipocalin (Lcn)2 and heme oxygenase (HO)-1 in the lung, along with pro-inflammatory/cytotoxic (COX-2(+) and MMP-9(+)), and anti-inflammatory/wound repair (CD163+ and Gal-3(+)) macrophages. Treatment of rats with pentoxifylline (46.7 mg/kg, i.p.) daily for 3d beginning 15 min after NM significantly reduced NM-induced lung injury, inflammation, and oxidative stress, as measured histologically and by decreases in BAL cell and protein content, and levels of HO-1 and Lcn2. Macrophages expressing COX-2 and MMP-9 also decreased after pentoxifylline, while CD163+ and Gal-3(+) macrophages increased. This was correlated with persistent upregulation of markers of wound repair including pro-surfactant protein-C and proliferating nuclear cell antigen by Type II cells. NM-induced lung injury and inflammation were associated with alterations in the elastic properties of the lung, however these were largely unaltered by pentoxifylline. These data suggest that pentoxifylline may be useful in treating acute lung injury, inflammation and oxidative stress induced by vesicants.


Subject(s)
Acute Lung Injury/pathology , Mechlorethamine/toxicity , Oxidative Stress/drug effects , Pentoxifylline/pharmacology , Pneumonia/chemically induced , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Animals , Chemical Warfare Agents/toxicity , Cyclooxygenase 2/metabolism , Heme Oxygenase-1/metabolism , Irritants/toxicity , Lipocalin-2 , Lipocalins/metabolism , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/metabolism , Male , Matrix Metalloproteinase 9/metabolism , Pneumonia/drug therapy , Rats , Rats, Wistar , Receptors, CXCR3/metabolism
16.
Toxicol Sci ; 133(2): 309-19, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23492811

ABSTRACT

In these studies, we analyzed the effects of ozone on bronchiolar epithelium. Exposure of rats to ozone (2 ppm, 3 h) resulted in rapid (within 3 h) and persistent (up to 72 h) histological changes in the bronchiolar epithelium, including hypercellularity, loss of cilia, and necrotizing bronchiolitis. Perivascular edema and vascular congestion were also evident, along with a decrease in Clara cell secretory protein in bronchoalveolar lavage, which was maximal 24 h post-exposure. Ozone also induced the appearance of 8-hydroxy-2'-deoxyguanosine, Ym1, and heme oxygenase-1 in the bronchiolar epithelium. This was associated with increased expression of cleaved caspase-9 and beclin-1, indicating initiation of apoptosis and autophagy. A rapid and persistent increase in galectin-3, a regulator of epithelial cell apoptosis, was also observed. Following ozone exposure (3-24 h), increased expression of cyclooxygenase-2, inducible nitric oxide synthase, and arginase-1 was noted in bronchiolar epithelium. Ozone-induced injury and oxidative stress in bronchiolar epithelium were linked to methacholine-induced alterations in pulmonary mechanics. Thus, significant increases in lung resistance and elastance, along with decreases in lung compliance and end tidal volume, were observed at higher doses of methacholine. This indicates that ozone causes an increase in effective stiffness of the lung as a consequence of changes in the conducting airways. Collectively, these studies demonstrate that bronchiolar epithelium is highly susceptible to injury and oxidative stress induced by acute exposure to ozone; moreover, this is accompanied by altered lung functioning.


Subject(s)
Acute Lung Injury/chemically induced , Lung/drug effects , Oxidative Stress/drug effects , Ozone/toxicity , Respiratory Mucosa/drug effects , Acute Lung Injury/metabolism , Acute Lung Injury/physiopathology , Animals , Bronchioles/drug effects , Bronchioles/metabolism , Disease Models, Animal , Female , Lung/metabolism , Lung/physiopathology , Rats , Rats, Wistar , Respiratory Function Tests , Respiratory Mucosa/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...