Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Springerplus ; 4: 6, 2015.
Article in English | MEDLINE | ID: mdl-25995983

ABSTRACT

Weaver ants (Oecophylla longinoda Latreille) are used commercially to control pest insects and for protein production. In this respect fast colony growth is desirable for managed colonies. Transplantation of non-nestmate pupae to incipient colonies has been shown to boost colony growth. Our objectives were to find the maximum number of pupae a founding queen can handle, and to measure the associated colony growth. Secondly, we tested if transplantation of pupae led to production of larger nanitic workers (defined as unusually small worker ants produced by founding queens in their first batch of offspring). Forty-five fertilized queens were divided into three treatments: 0 (control), 100 or 300 non-nestmate pupae transplanted to each colony. Pupae transplantation resulted in highly increased growth rates, as pupae were readily adopted by the queens and showed high proportions of surviving (mean = 76%). However, survival was significantly higher when 100 pupae were transplanted compared to transplantation of 300 pupae, indicating that queens were unable to handle 300 pupae adequately and that pupae require some amount of nursing. Nevertheless, within the 60-day experiment the transplantation of 300 pupae increased total colony size more than 10-fold whereas 100 pupae increased the size 5.6 fold, compared to control. This increase was due not only to the individuals added in the form of pupae but also to an increased per capita brood production by the resident queen, triggered by the adopted pupae. The size of hatching pupae produced by the resident queen also increased with the number of pupae transplanted, leading to larger nanitic workers in colonies adopting pupae. In conclusion, pupae transplantation may be used to produce larger colonies with larger worker ants and may thus reduce the time to produce weaver ant colonies for commercial purposes. This in turn may facilitate the implementation of the use of weaver ants.

2.
Zookeys ; (540): 539-57, 2015.
Article in English | MEDLINE | ID: mdl-26798277

ABSTRACT

This paper reviews all available information regarding the occurrence and biology of the melon fly, Zeugodacus cucurbitae (Coquillett), in the Afrotropical Region, including data on invasion history, distribution patterns, population genetics, host range, and interspecific competition. Although limited intraspecific variability has been observed within the region regarding the above mentioned aspects, there seems to be no indication that Zeugodacus cucurbitae represents a species complex. A checklist of all of the species included in Zeugodacus as recently proposed by Virgilio et al. (2015) is provided.

3.
Environ Entomol ; 40(4): 844-54, 2011 Aug.
Article in English | MEDLINE | ID: mdl-22251685

ABSTRACT

In 2003, the invasive fruit fly Bactrocera invadens Drew, Tsuruta & White (Diptera: Tephritidae) (Drew et al. 2005), of possible Sri Lankan origin, has been detected in the East and about 1 yr later in West Africa. In regular surveys in Benin and Cameroon covering 4 yr, samples from 117 plant species across 43 families have been obtained. Incubation of field-collected fruits demonstrate that in West and Central Africa (WCA) B. invadens is highly polyphagous, infesting wild and cultivated fruits of at least 46 species from 23 plant families with guava (Psidium spp.), mango (Mangifera spp.), and citrus (spp.), and the wild hosts tropical almond (Terminalia catappa L.), African wild mango (Irvingia gabonensis (Aubry-Lecomte) Baill.), and sheanut (Vitellaria paradoxa C.F.Gaertn.) showing the highest infestation index. B. invadens occurs in 22 countries of WCA with new records for Angola, Central African Republic, the Congo, DR Congo, Equatorial Guinea, Gabon, Gambia, Guinea Bissau, Mali, Mauritania, Niger, and Sierra Leone. Overall, the pest has spread across a North-South distance of ≍5,000 km representing a contiguous area of >8.3 million km(2) within WCA. B. invadens has adapted to a wide range of ecological and climatic conditions extending from low land rainforest to dry savanna. Because of its highly destructive and invasive potential, B. invadens poses a serious threat to horticulture in Africa if left uncontrolled. Moreover, the presence of this quarantine pest causes considerable restrictions on international trade of affected crops.


Subject(s)
Crops, Agricultural/parasitology , Introduced Species/statistics & numerical data , Tephritidae , Trees/parasitology , Animals , Benin , Cameroon , Male
4.
J Econ Entomol ; 102(2): 515-21, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19449630

ABSTRACT

Effectiveness of GF-120 (Dow Chemical) Fruit Fly Bait containing the insecticide spinosad in controlling mango-infesting fruit flies (Diptera: Tephritidae) was assessed by comparing treated orchards with untreated orchards. Twelve mango, Mangifera indica L., plantations located in six villages (two similar orchards per village: one orchard treated and orchard untreated) scattered in the Borgou department (northern Benin) were monitored weekly with fly traps, and the fruit was sampled twice for larval infestation at the beginning and in the middle of May in both 2006 and 2007. The two main mango fruit fly pests are Ceratitis cosyra (Walker) and Bactrocera invadens Drew, Tsuruta & White, an invasive species that recently spread throughout West Africa. In both the 2006 and 2007 seasons, C. cosyra had the earliest peak of abundance, and the difference between treated and untreated orchards, in terms of mean number of flies trapped per week and per trap, was significant only in 2007. B. invadens populations quickly increased with the onset of the rains, from mid-May onward, with no significant difference between treated and untreated orchards. In 2006 and 2007, the larval infestation by B. invadens was significantly lower in plots treated with GF-120 than in untreated control plots. GF-120 provided an 81% reduction in the number of pupae per kilogram of fruit after weekly applications for 7 wk in 2006 and an 89% reduction after 10 wk of weekly applications in 2007. The possibility of integrating GF120 bait sprays in an integrated pest management package is discussed in relation to market requirements.


Subject(s)
Insecticides/pharmacology , Macrolides/pharmacology , Mangifera/parasitology , Tephritidae/drug effects , Animals , Benin , Drug Combinations , Insect Control/methods , Larva/drug effects , Time
5.
J Econ Entomol ; 100(3): 695-701, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17598527

ABSTRACT

Six mango, Mangifera indica L., plantations around Parakou, northern Benin, were sampled at 2-wk intervals for fruit fly damage from early April to late May in 2005. Mean damage ranged from 1 to 24% with a weaver ant, Oecophylla longinoda (Latreille), being either abundant or absent. The fruit fly complex is made up of Ceratitis spp. and Bactrocera invadens Drew et al., a new invasive species in West Africa. In 2006, Ceratitis spp. peaked twice in the late dry season in early April and early May, whereas B. invadens populations quickly increased at the onset of the rains, from mid-May onward. Exclusion experiments conducted in 2006 with 'Eldon', 'Kent', and 'Gouverneur' confirmed that at high ant abundance levels, Oecophylla significantly reduced fruit fly infestation. Although fruit fly control methods are still at an experimental stage in this part of the world, farmers who tolerated weaver ants in their orchard were rewarded by significantly better fruit quality. Conservation biological control with predatory ants such as Oecophylla in high-value tree crops has great potential for African and Asian farmers. Implications for international research for development at the Consultative Group on International Agricultural Research level are discussed.


Subject(s)
Ants/physiology , Mangifera/parasitology , Pest Control, Biological , Tephritidae/physiology , Animals , Benin , Feeding Behavior , Fruit/economics , Fruit/parasitology , Predatory Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...