Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicology ; 28(9): 1075-1084, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31559557

ABSTRACT

The aquaculture growth can be followed by the occurrence of more and new pathogenic agents, since the production leads to higher fish densities in confined areas more appropriate to the appearance and propagation of pathologies. Copper sulfate has been widely used in preventing and controlling fish parasites. The objective of this study is to investigate the effects of copper treatments in the fish tissues (bioaccumulation and histological changes in different organs), mortality and evaluate what happens during the recovery period. White sea bream (Diplodus sargus) were exposed to copper sulfate (0.25 and 0.5 mg L-1) during 60 days followed with a 75-day recovery period. The results showed that the concentration of copper in fish liver was significantly higher in the 0.5 mg L-1 treatment than in the 0.25 mg L-1 treatment. Conversely, copper load in the muscle did not differ significantly between treatments and control. Copper levels in muscle, and especially in liver, increased during copper exposure (up to 60 days). In summary, at higher concentrations copper sulfate treatment (0.5 mg L-1) might be toxic to fish, which showed histological alterations and copper accumulation in their tissues, mainly in the liver. Nevertheless, individuals returned to their original state after a 75-day recovery period and the tested copper concentrations does not represents risk for food safety.


Subject(s)
Antiparasitic Agents/toxicity , Copper Sulfate/toxicity , Copper/toxicity , Environmental Exposure/analysis , Perciformes/physiology , Animals , Aquaculture , Bioaccumulation , Dose-Response Relationship, Drug , Longevity/drug effects , Tissue Distribution
2.
Anal Bioanal Chem ; 411(10): 2177-2187, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30824966

ABSTRACT

The present work describes the development and validation of a novel approach to determine methadone (MTD) and its main metabolite (EDDP) in oral fluid samples, using the dried saliva spots (DSS) sampling approach and gas chromatography-tandem mass spectrometry (GC-MS/MS). Oral fluid samples (50 µL) were applied into Whatman™ 903 protein saver filter paper cards and were allowed to dry overnight. The extraction was carried out by immersion of the spot in 1 mL of isopropyl alcohol with agitation for 1 min. Afterwards, the extract was centrifuged for 15 min at 3500 rpm and the supernatant evaporated to dryness and reconstituted with 50 µL of methanol. The procedure was considered linear in the range of 10 to 250 ng/mL for both compounds, with determination coefficients greater than 0.99. Intra- and inter-day precision and accuracy revealed coefficients of variation (CVs) lower than 15% at the studied concentrations, with mean relative errors within ± 15% of the nominal concentrations. Recoveries ranged from 45 to 74%. The limits of detection and quantification were 5 and 10 ng/mL respectively for both analytes. All studied parameters complied with the defined criteria and the method enabled the successful determination of MTD and EDDP in oral fluid samples from patients undergoing opiate substitution/maintenance therapy.


Subject(s)
Analgesics, Opioid/pharmacokinetics , Drug Monitoring/methods , Gas Chromatography-Mass Spectrometry/methods , Methadone/pharmacokinetics , Pyrrolidines/pharmacokinetics , Saliva/metabolism , Analgesics, Opioid/analysis , Humans , Limit of Detection , Methadone/analysis , Pyrrolidines/analysis , Saliva/chemistry , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...