Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ticks Tick Borne Dis ; 13(3): 101929, 2022 05.
Article in English | MEDLINE | ID: mdl-35278856

ABSTRACT

The present study was conducted to evaluate the effects of carvacrol and thymol on the antioxidant and detoxifying enzymes of larvae from two populations of R. microplus: Jaguar (tick population resistant to six classes of acaricides) and Porto Alegre (susceptible tick population). Carvacrol and thymol were tested at concentrations ranging from 0.14 to 5.0 mg mL-1 in both populations to determine the LC50. In addition, the LC1, LC25, and LC75 were estimated using the LC50 and HillSlope of each compound. Larvae of both populations of R. microplus were then treated with the LC1, LC25, LC50, and LC75 of each monoterpene, and those that survived were processed to evaluate the effects of the compounds on the antioxidant and detoxifying systems of larvae; these effects were assessed by determining the activity of the enzymes, glutathione-S-transferase (GST), catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPX). Larvae from the Jaguar population treated with different lethal concentrations of carvacrol and thymol displayed a dose-dependent increase in CAT, GPX, SOD, and GST after treatment with LC25. Further, larvae treated with the LC75 had the highest levels of enzyme activity for carvacrol (1.76 mg mL-1) and thymol (1.32 mg mL-1). CAT, GPX, SOD, and GST activity in Porto Alegre population larvae treated with carvacrol and thymol also increased significantly up to the LC50 of each monoterpene. However, at the LC75 of carvacrol and thymol, a decrease in the activity of all enzymes was observed for this tick population. These findings indicate that carvacrol and thymol induced increased activity of all evaluated enzymes at different lethal concentrations in R. microplus larvae from two populations. Such findings unveil the possible mechanisms of action of these natural acaricides.


Subject(s)
Acaricides , Ixodidae , Rhipicephalus , Acaricides/pharmacology , Animals , Antioxidants/pharmacology , Cymenes , Larva , Thymol/pharmacology
2.
Biochem Res Int ; 2017: 5342947, 2017.
Article in English | MEDLINE | ID: mdl-29123924

ABSTRACT

The present research aimed to study the chemical composition and acaricidal activity of Citrus limonum and Piper nigrum essential oils against the cattle tick Rhipicephalus microplus. GC-MS analysis of C. limonum essential oil showed limonene (50.3%), ß-pinene (14.4%), and γ-terpinene (11.7%) as the major components; P. nigrum oil was mainly composed of ß-caryophyllene (26.2%), σ-ocymene (5.8%), and α-pinene (5.5%). Acaricide activity was evaluated at concentrations of 2.5, 5.0, and 10.0% (v/v) of each plant oil, as well as 1 : 1 combination of both oils (5% : 5%, 2.5% : 2.5%, and 1.25% : 1.25% each), by immersing engorged R. microplus females for one minute. The LC90 of oils from C. limonum, P. nigrum, and the combination were 4.9%, 14.8%, and 5.1%, respectively. C. limonum essential oil caused 100% mortality of engorged females at the highest concentration (10%). P. nigrum essential oil inhibited egg-laying by up to 96% in a concentration-dependent manner, suggesting it reduces tick fecundity. When combined, the oils presented toxicity as to C. limonum oil alone, but with stronger inhibition of oviposition (5% : 5%), indicating a possible additive effect against R. microplus. The present data provide support for further investigation of novel natural products to control bovine tick infestations.

3.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt A): 2922-2933, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27664315

ABSTRACT

BACKGROUND: Inorganic PPases are essential metal-dependent enzymes that convert pyrophosphate into orthophosphate. This reaction is quite exergonic and provides a thermodynamic advantage for many ATP-driven biosynthetic reactions. We have previously demonstrated that cytosolic PPase from R. microplus embryos is an atypical Family I PPase. Here, we explored the functional role of the cysteine residues located at the homodimer interface, its redox sensitivity, as well as structural and kinetic parameters related to thiol redox status. METHODS: In this work, we used prokaryotic expression system for recombinant protein overexpression, biochemical approaches to assess kinetic parameters, ticks embryos and computational approaches to analyze and predict critical amino acids as well as physicochemical properties at the homodimer interface. RESULTS: Cysteine 339, located at the homodimer interface, was found to play an important role in stabilizing a functional cooperativity between the two catalytic sites, as indicated by kinetics and Hill coefficient analyses of the WT-rBmPPase. WT-rBmPPase activity was up-regulated by physiological antioxidant molecules such as reduced glutathione and ascorbic acid. On the other hand, hydrogen peroxide at physiological concentrations decreased the affinity of WT-rBmPPase for its substrate (PPi), probably by inducing disulfide bridge formation. CONCLUSIONS: Our results provide a new angle in understanding redox control by disulfide bonds formation in enzymes from hematophagous arthropods. The reversibility of the down-regulation is dependent on hydrophobic interactions at the dimer interface. GENERAL SIGNIFICANCE: This study is the first report on a soluble PPase where dimeric cooperativity is regulated by a redox mechanism, according to cysteine redox status.


Subject(s)
Inorganic Pyrophosphatase/metabolism , Protein Multimerization , Sulfhydryl Compounds/metabolism , Ticks/enzymology , Amino Acids/metabolism , Animals , Calcium/pharmacology , Disulfides/metabolism , Electrophoresis, Polyacrylamide Gel , Fluorides/pharmacology , Glutathione Disulfide/metabolism , Hydrophobic and Hydrophilic Interactions , Kinetics , Models, Molecular , Mutagenesis, Site-Directed , Mutant Proteins/metabolism , Oxidants/pharmacology , Oxidation-Reduction , Protein Multimerization/drug effects , Recombinant Proteins/metabolism , Reducing Agents/pharmacology
4.
Vet Parasitol ; 181(2-4): 291-300, 2011 Sep 27.
Article in English | MEDLINE | ID: mdl-21536386

ABSTRACT

The tick Rhipicephalus (Boophilus) microplus is one of the most important bovine ectoparasites, a disease vector responsible for losses in meat and milk productions. A cysteine protease similar to cathepsin L, named BmCL1, was previously identified in R. microplus gut, suggesting a role of the enzyme in meal digestion. In this work, BmCL1 was successfully expressed in Pichia pastoris system, yielding 54.8 mg/L of culture and its activity was analyzed by synthetic substrates and against a R. microplus cysteine protease inhibitor, Bmcystatin. After rBmCl1 biochemical characterization it was used in a selection of a peptide phage library to determine rBmCL1 substrate preference. Obtained sequenced clones showed that rBmCL1 has preference for Leu or Arg at P(1) position. The preference for Leu at position P(1) and the activation of BmCL1 after a Leu amino acid residue suggest possible self activation.


Subject(s)
Cysteine Proteases/metabolism , Rhipicephalus/enzymology , Amino Acid Sequence , Animals , Cloning, Molecular , Cysteine Proteases/genetics , Gene Expression Regulation , Molecular Sequence Data , Peptide Library , Polymerase Chain Reaction , Rhipicephalus/genetics , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...