Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Mol Divers ; 25(1): 55-66, 2021 Feb.
Article in English | MEDLINE | ID: mdl-31900682

ABSTRACT

Cancer is one of the leading causes of death worldwide and requires intense and growing research investments from the public and private sectors. This is expected to lead to the development of new medicines. A determining factor in this process is the structural understanding of molecules with potential anticancer properties. Since the major compounds used in cancer therapies fail to encompass every spectrum of this disease, there is a clear need to research new molecules for this purpose. As it follows, we have studied the class of quinolinones that seem effective for such therapy. This paper describes the structural elucidation of a novel dihydroquinoline by single-crystal X-ray diffraction and spectroscopy characterization. Topology studies were carried through Hirshfeld surfaces analysis and molecular electrostatic potential map; electronic stability was evaluated from the calculated energy of frontier molecular orbitals. Additionally, in silico studies by molecular docking indicated that this dihydroquinoline could act as an anticancer agent due to their higher binding affinity with human aldehyde dehydrogenase 1A1 (ALDH 1A1). Tests in vitro were performed for VERO (normal human skin keratinocytes), B16F10 (mouse melanoma), and MDA-MB-231 (metastatic breast adenocarcinoma), and the results certified that compound as a potential anticancer agent. A Dihydroquinoline derivative was tested against three cancer cell lines and the results attest that compound as potential anticancer agent.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Quinolines/chemistry , Quinolines/pharmacology , Animals , Cell Line , Cell Line, Tumor , Cell Proliferation/drug effects , Chlorocebus aethiops , Crystallography, X-Ray/methods , Drug Screening Assays, Antitumor/methods , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Humans , Mice , Models, Molecular , Molecular Docking Simulation/methods , Quinolones/chemistry , Quinolones/pharmacology , Structure-Activity Relationship , Vero Cells
2.
J Mol Model ; 25(7): 205, 2019 Jun 29.
Article in English | MEDLINE | ID: mdl-31256254

ABSTRACT

Quinolinones and sulfonamides are moieties with biological potential that can be linked to form new hybrid compounds with improved potential. However, there are few hybrids of these molecules reported. In this sense, this work presents a structural description of a new sulfonamide-dihydroquinolinone (E)-2-(2-methoxyphenyl)-3-(3-nitrobenzylidene)-1-(phenylsulfonyl)-2,3 dihydroquinolin-4(1H)-one (DHQ). The molecular structure of DHQ was elucidated by X-ray diffraction, nuclear magnetic resonance and infrared spectroscopy, and both molecular packing and intermolecular interactions were analyzed by Hirshfeld surfaces and fingerprint maps. In addition, theoretical calculations on frontier orbitals, molecular electrostatic potential maps, and assignments were performed. The crystal packing of DHQ was found to be stabilized by a dimer through a weak C-H⋯O interaction along the c axis. Moreover, the structure is stabilized mainly by C-H⋯O and C-H⋯π interactions, since the interaction C25-H25⋯π contributes to a chain formation. The Hirshfeld normalized surface shows that the closest interactions are around the atoms linked to the dimer formation. The calculations indicate that DHQ possesses electrophilic sites near O atoms and depleted electrons around the H atoms. There is a band GAP of 3.29 eV between its frontier orbitals, which indicates that DHQ is more reactive than other analogues published.

3.
J Mol Model ; 23(11): 315, 2017 Oct 18.
Article in English | MEDLINE | ID: mdl-29044437

ABSTRACT

Coumarins are natural and synthetic active ingredients widely applied in diverse types of medicinal treatments, such as cancer, inflammation, infection, and enzyme inhibition (monoamine oxidase B). Dihydrocoumarin compounds are of great interest in organic chemistry due to their structural versatilities and, as part of our investigations concerning the structural characterization of small molecules, this work focuses on crystal structure and spectroscopic characterization of the synthesized and crystallized compound 4-(4-methoxyphenyl)-3,4-dihydro-chromen-2-one (C16H14O3). Additionally, a theoretical calculation was performed using density functional theory to analyze the sites where nucleophilic or electrophilic attack took place and to examine the molecular electrostatic potential surface. Throughout all of these calculations, both density functional theory and Car-Parrinello molecular dynamics were performed by fully optimized geometry. The spectroscopic analysis indicated the presence of aromatic carbons and hydrogen atoms, and also the carbonyl and methoxy groups that were confirmed by the crystallographic structure. The C16H14O3 compound has a non-classical intermolecular interaction of type C-H⋅⋅⋅O that drives the molecular arrangement and the crystal packing. Moreover, the main absorbent groups were characterized throughout calculated harmonic vibrational frequencies. Also, natural bond orbital analysis successfully locates the molecular orbital with π-bonding symmetry and the molecular orbital with π* antibonding symmetry. Finally, the gap between highest occupied and lowest unoccupied molecular orbitals implies in a high kinetic stability and low chemical reactivity of title molecule.

4.
Mol Pharm ; 11(10): 3696-706, 2014 Oct 06.
Article in English | MEDLINE | ID: mdl-25190147

ABSTRACT

One of the great challenges in pharmacokinetics is to find a means to optimize the transport across cell barriers. In this work, permeation across a cell monolayer, such as the tight endothelia in the blood-brain barrier, was modeled using a homologous series of amphipatic molecules, 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD)-labeled alkyl chain amphiphiles (NBD-Cn, n = 2 to 16), to obtain rules that relate permeant structure to permeability. The amphiphile enters the system from the serum, equilibrated with serum albumin and lipoproteins, and its sequestration by serum components, interaction with the endothelium, and accumulation in the tissue is followed over time. The dependence of the permeability coefficient on the number of carbons of the amphiphile's alkyl chain has a parabolic-like shape. After a threshold value, an increase in the hydrophobicity of the amphiphile, along the homologous series, results in a decrease in the characteristic rate of permeation to the tissue. A sensitivity analysis was performed, and the rate limiting steps for permeation of each amphiphile were identified. Sequestration in the serum and rate of interaction with the endothelium, particularly the rate of desorption, were found to be the determinant processes for some amphiphiles, while for others translocation was the rate limiting step. Additionally, for some amphiphiles a single rate limiting step could not be identified, with several steps contributing significantly to the overall permeation. Finally, we derived analytical equations that adequately describe the rate of amphiphile accumulation in the tissue for the cases where permeation is controlled by a single rate limiting step.


Subject(s)
Models, Theoretical , Animals , Biological Transport/physiology , Blood-Brain Barrier , Humans , Kinetics , Lipid Bilayers
5.
J Phys Chem B ; 114(49): 16337-46, 2010 Dec 16.
Article in English | MEDLINE | ID: mdl-21090614

ABSTRACT

The interaction of small molecules, such as drugs or metabolites, with proteins and biomembranes is of fundamental importance for their bioavailability. The systematic characterization of the binding affinity for structurally related ligands may provide rules that allow its prediction for any other relevant molecule. In this work we have studied a homologous series of fluorescent fatty amines with the fluorescent moiety 7-nitrobenz-2-oxa-1,3-diazol-4-yl covalently bound to the amine group (NBD-C(n); n = 4, 6, 8, 10, 12, 14, and 16) in aqueous solution and associated with BSA or lipid bilayers. We have found a linear dependence with the length of the alkyl chain, up to NBD-C(10), for the Gibb's free energy of partition between the aqueous solution and 1-palmitoyl-2-oleoyl phosphatidylcholine bilayers equal to ΔΔG = -2.5 ± 0.3 kJ/mol per methylene group. Additionally, the amphiphiles interacted efficiently with bovine serum albumin, and it was inhibited by fatty acids indicating that binding occurs to the fatty acids highest affinity binding site. The association of the amphiphiles with BSA and POPC bilayers was performed at different temperatures (15-35 °C) allowing for the calculation of the enthalpic and entropic contributions. A value of ΔH = -15 ± 4 kJ/mol was obtained for all amphiphiles and binding agents. The entropy contribution was always positive and increased with the length of the alkyl chain. The location of the ligand in the biological membrane is also of high relevance, namely because this will determine its effect on biomembrane properties at high ligand concentrations. With this goal, we have measured some photophysical properties of the amphiphiles inserted in POPC bilayers, and we found no significant variation along the series, indicating that the NBD group is located in a region with similar properties regardless of the length of the nonpolar group. An exception was noted for the case of NBD-C(14) whose parameters were somewhat different from the trend observed.


Subject(s)
Amines/chemistry , Phosphatidylcholines/chemistry , Surface-Active Agents/chemistry , Thermodynamics , Animals , Azoles/chemistry , Binding Sites , Cattle , Models, Biological , Nitrobenzenes/chemistry , Protein Binding , Serum Albumin, Bovine , Water/chemistry
6.
Biochim Biophys Acta ; 1778(5): 1308-15, 2008 May.
Article in English | MEDLINE | ID: mdl-18358232

ABSTRACT

The bovine milk lipocalin, beta-Lactoglobulin (beta-LG), has been associated with the binding and transport of small hydrophobic and amphiphilic compounds, whereby it is proposed to increase their bioavailability. We have studied the binding of the fluorescent phospholipid-derivative, NBD-didecanoylphosphatidylethanolamine (NBD-diC10PE) to beta-LG by following the increase in amphiphile fluorescence upon binding to the protein using established methods. The equilibrium association constant, KB, was (1.2+/-0.2)x10(6) M(-1) at 25 degrees C, pH 7.4 and I=0.15 M. Dependence of KB on pH and on the monomer-dimer equilibrium of beta-LG gave insight on the nature of the binding site which is proposed to be the hydrophobic calyx formed by the beta-barrel in the protein. The monomer-dimer equilibrium of beta-LG was re-assessed using fluorescence anisotropy of Tryptophan. The equilibrium constant for dimerization, KD, was (7.0+/-1.5)x10(5) M(-1) at 25 degrees C, pH 7.4, and 0.15 M ionic strength. The exchange of NBD-diC10PE between beta-LG and POPC lipid bilayers was followed by the change in NBD fluorescence. beta-LG was shown to be a catalyst of phospholipid exchange between lipid bilayers, the mechanism possibly involving adsorption of the protein at the bilayer surface.


Subject(s)
Lactoglobulins/metabolism , Lipid Bilayers , Phospholipids/metabolism , Fluorescence , Protein Binding
7.
Biophys J ; 80(3): 1384-94, 2001 Mar.
Article in English | MEDLINE | ID: mdl-11222299

ABSTRACT

The effects of solid-fluid phase separations on the kinetics of association of a single-chain fluorescent amphiphile were investigated in two different systems: pure DMPC (dimyristoylphosphatidylcholine) and a 1:1 mixture of DMPC and DSPC (distearoylphosphatidylcholine). In pure DMPC vesicles, solid (s) and fluid (l(d)) phases coexist at the phase transition temperature, T(m), whereas a 1:1 mixture of DMPC and DSPC shows a stable s-l(d) phase separation over a large temperature interval. We found that in single-component bilayers, within the main phase transition, the experimental kinetics of association are clearly not single-exponential, the deviation from that function becoming maximal at the T(m). This observation can be accounted for by a rate of desorption that is slower than desorption from either fluid or solid phases, leaving the rates of insertion unchanged, but a treatment in terms of stable fluid and solid domains may not be adequate for the analysis of the association of an amphiphile with pure DMPC vesicles at the T(m). In DMPC/DSPC mixtures with solid-fluid phase coexistence, association occurs overall faster than expected based on phase composition. The observed kinetics can be described by an increase in the rate of insertion, leaving the desorption rates unchanged. The fast kinetics of insertion of the amphiphile into two-phase bilayers in two-component vesicles is attributed to a more rapid insertion into defect-rich regions, which are most likely phase boundaries between solid and fluid domains. A two-component mixture of lipids that shows a stable phase separation between l(d)-s phases over a large temperature interval thus behaves very differently from a single-component bilayer at the T(m), with respect to insertion of amphiphiles.


Subject(s)
Dimyristoylphosphatidylcholine/chemistry , Fluorescent Dyes , Lipid Bilayers/chemistry , Phosphatidylcholines/chemistry , Kinetics , Liposomes/chemistry , Models, Theoretical , Spectrometry, Fluorescence , Thermodynamics
8.
Biophys J ; 78(6): 3019-25, 2000 Jun.
Article in English | MEDLINE | ID: mdl-10827980

ABSTRACT

The partition coefficients (K(P)) of a series of single-chain and double-chain fluorescent amphiphiles, between solid ordered (P(beta') and L(beta)) and liquid disordered (L(alpha) of the type l(d)) lipid phases coexisting in the same lipid bilayer, was studied using steady-state fluorescence emission anisotropy. The single-chain amphiphiles were N-(7-nitrobenzoxa-2, 3-diazol-4-yl)-alkylamines, and the double-chain amphiphiles were N-(7-nitrobenzoxa-2, 3-diazol-4-yl)-phosphatidylethanolamines with chain lengths of 12-18 carbon atoms. Saturated 18-carbon alkyl/acyl chain compounds were also compared with Delta(9)-cis unsaturated chains of the same chain length. The fluorescence anisotropy of the probes was examined in lipid bilayers (multilamellar vesicles) prepared from an equimolar mixture of dilauroylphosphatidylcholine and distearoylphosphatidylcholine and studied as a function of temperature through the entire temperature range of coexistence of ordered gel phases and a disordered fluid phase in this system. The unsaturated chain amphiphiles partitioned exclusively into the fluid phase whenever this phase was present, as did the saturated chain amphiphiles with the shortest chains (C(12:0)), while K(P) ranges between 1 and 2, in favor of the L(beta) solid phase, for the amphiphiles with long saturated (C(18:0)) alkyl/acyl chains, with intermediate behavior for the intermediate chain lengths. All probes appeared to be totally excluded from P(beta') solid (gel) phases. The technique was also used to determine partitioning of some of the probes between coexisting liquid ordered (cholesterol-containing) (l(o)) and liquid disordered (l(d)) L(alpha) phases. In this case the ratio of signal amplitude to noise allowed us to obtain a qualitative, but not quantitative, measure of the phase partitioning of the probes. We conclude that the partitioning behavior of the probes examined between coexisting l(o) and l(d) phases is qualitatively similar to that observed between solid ordered and liquid disordered phases.


Subject(s)
Fluorescent Dyes , Lipid Bilayers/chemistry , Phosphatidylcholines/chemistry , Phosphatidylethanolamines/chemistry , Fluorescence Polarization , Quantum Theory , Structure-Activity Relationship
9.
Biophys J ; 78(1): 267-80, 2000 Jan.
Article in English | MEDLINE | ID: mdl-10620291

ABSTRACT

We examined the consequences of membrane heterogeneity for the association of a simple amphiphilic molecule with phospholipid vesicles with solid-liquid and liquid-liquid phase coexistence. To address this problem we studied the association of a single-chain, fluorescent amphiphile with dimyristoylphosphatidylcholine (DMPC) vesicles containing varying amounts of cholesterol. DMPC bilayers containing 15 mol% cholesterol show a region of solid-liquid-ordered (s-l(o)) coexistence below the T(m) of pure DMPC (23.9 degrees C) and a region of liquid-disordered-liquid-ordered coexistence (l(d)-l(o)) above the T(m). We first examined equilibrium binding and kinetics of amphiphile insertion into single-phase vesicles (s, l(d), and l(o) phase). The data obtained were then used to predict the behavior of the equivalent process in a two-phase system, taking into account the fractions of phases present. Next, the predicted kinetics were compared to experimental kinetics obtained from a two-phase system. We found that association of the amphiphile with lipid vesicles is not influenced by the existence of l(d)-l(o) phase boundaries but occurs much more slowly in the s-l(o) phase coexistence region than expected on the basis of phase composition.


Subject(s)
Cholesterol/chemistry , Dimyristoylphosphatidylcholine/chemistry , Fluorescent Dyes , Lipid Bilayers/chemistry , Calorimetry , Chloroform , Kinetics , Models, Biological , Models, Chemical , Spectrometry, Fluorescence
11.
Biophys J ; 72(4): 1501-11, 1997 Apr.
Article in English | MEDLINE | ID: mdl-9083656

ABSTRACT

Monte Carlo simulations of fluorescence recovery after photobleaching (FRAP) experiments on two-component lipid bilayers systems in the solid-fluid phase coexistence region were carried out to study the geometry and size of fluid domains in these bilayers. The gel phase was simulated by superposable elliptical domains, which were either of predetermined dimensions, increasing in number with increasing gel phase fraction, or of predetermined number, increasing in dimensions with increasing gel phase fraction. The simulations were done from two perspectives: 1) a time-independent analysis of fractional fluorescence recovery as a function of fractional fluid phase in the system; and 2) a time-dependent analysis of fractional fluorescence recovery as a function of time at a given fraction of fluid phase in the system. The time-dependent simulations result in recovery curves that are directly comparable to experimental FRAP curves and provide topological and geometrical models for the coexisting phases that are consistent with the experimental result.


Subject(s)
Lipid Bilayers/metabolism , Monte Carlo Method , Fluorescence , Gels , Kinetics , Lipid Bilayers/chemistry , Phosphatidylcholines/metabolism
12.
Biophys J ; 71(4): 1869-76, 1996 Oct.
Article in English | MEDLINE | ID: mdl-8889162

ABSTRACT

Alpha-Hemolysin is an extracellular protein toxin (107 kDa) produced by some pathogenic strains of Escherichia coli. Although stable in aqueous medium, it can bind to lipid bilayers and produce membrane disruption in model and cell membranes. Previous studies had shown that toxin binding to the bilayer did not always lead to membrane lysis. In this paper, we find that alpha-hemolysin may bind the membranes in at least two ways, a reversible adsorption and an irreversible insertion. Reversibility is detected by the ability of liposome-bound toxin to induce hemolysis of added horse erythrocytes; insertion is accompanied by an increase in the protein intrinsic fluorescence. Toxin insertion does not necessarily lead to membrane lysis. Studies of alpha-hemolysin insertion into bilayers formed from a variety of single phospholipids, or binary mixtures of phospholipids, or of phospholipid and cholesterol, reveal that irreversible insertion is favored by fluid over gel states, by low over high cholesterol concentrations, by disordered liquid phases over gel or ordered liquid phases, and by gel over ordered liquid phases. These results are relevant to the mechanism of action of alpha-hemolysin and provide new insights into the membrane insertion of large proteins.


Subject(s)
Bacterial Proteins/chemistry , Escherichia coli Proteins , Hemolysin Proteins/chemistry , Lipid Bilayers , Phosphatidylcholines/chemistry , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Adsorption , Bacterial Toxins/chemistry , Cholesterol/chemistry , Dimyristoylphosphatidylcholine/chemistry , Escherichia coli , Fluorescent Dyes , Kinetics , Protein Binding , Spectrometry, Fluorescence
13.
Southeast Asian J Trop Med Public Health ; 26(2): 297-300, 1995 Jun.
Article in English | MEDLINE | ID: mdl-8629064

ABSTRACT

The mass implementation of short term multi-drug therapy in India, has led to dramatic falls in the prevalence of leprosy. This paper addresses the future role of non-governmental organizations currently involved in leprosy control. This evaluation is based on current trends in leprosy control, projected health needs in the future and the necessity to maximize health care outputs in the face of limited resources.


Subject(s)
Leprosy/prevention & control , Preventive Health Services/organization & administration , Voluntary Health Agencies/organization & administration , Drug Therapy, Combination , Financial Management , Forecasting , Health Policy , Health Promotion/organization & administration , Humans , India/epidemiology , Interinstitutional Relations , Leprosy/drug therapy , Leprosy/epidemiology , Mass Screening/organization & administration , Prevalence
14.
Mol Membr Biol ; 12(1): 157-62, 1995.
Article in English | MEDLINE | ID: mdl-7767377

ABSTRACT

The existence of an in-plane domain structure in biological membranes raises the question of the physiological function, if any, of this structure. One important function may be to enhance or limit the equilibrium poise and rates of in-plane reactions through control by the cell of the percolation properties of the domain system. At low average domain occupancy by reactants or interactants, which must be the case for most biological membrane components, moving the domain system from connection to disconnection has marked effects on the apparent equilibrium poise and the rates of membrane-confined reactions. This conclusion is based on computer modelling of the effects of disconnection/connection of nine types of bimolecular in-plane reactions. Using the phase structure and percolation properties of two-component, two-phase phospholipid bilayers, it is possible to examine experimentally homo- and heterodimerization reactions, and enzyme-catalysed reactions in-plane as well as the effects of a transmembrane peptide on these systems. These theoretical and experimental studies suggest that percolation effects may be physiologically important in biological membranes. Whether this is in fact the case remains to be demonstrated.


Subject(s)
Cell Membrane/metabolism , Models, Biological , Biophysical Phenomena , Biophysics , Macromolecular Substances , Structure-Activity Relationship
15.
Mol Membr Biol ; 12(1): 39-43, 1995.
Article in English | MEDLINE | ID: mdl-7767380

ABSTRACT

Temperature-composition phase diagrams of binary lipid mixtures under conditions of constant pressure and excess water show that component immiscibility is the rule rather than the exception in these systems. Phase immiscibility is particularly noted in the solid phase but several cases are known where immiscibility is apparent even in the fluid phase. Using the fluorescence recovery are photobleaching (FRAP) technique, we have examined the long-range translational diffusion (over several micrometers) of fluorescent lipid derivatives, soluble only in the fluid phase, in bilayers under conditions of temperature and composition where solid and fluid phases are co-existent. These experiments provide information regarding barriers to free diffusion of the reporter molecules in these systems. The barriers are solid phase domains that are impenetrable to the reporter molecules, and may either exist as a discontinuous (non-percolating) archipelago of solid phase 'islands' in as continuous (percolating) fluid phase 'sea', or as continuous (percolating) solid phase domain cluster with non-connected (non-percolating) 'lakes' of the fluid phase domains. The transition from one state to the other is the so-called 'percolation threshold'. In FRAP experiments the former case is manifested as a reduction of the measured long-range diffusion coefficient (increased recovery time) with complete fluorescence recovery, whereas in the latter case both the apparent recovery times and the percent recoveries are altered. The position of the percolation threshold as a function of temperature and composition within the phase diagram permits a reasonably exact estimation of the mass fractions of the two phases in the system at this threshold and, with certain assumptions, an estimation of solid phase domain symmetry.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Lipid Bilayers/chemistry , Phospholipids/chemistry , Biophysical Phenomena , Biophysics , Chemical Phenomena , Chemistry, Physical , Cholesterol/chemistry , Diffusion , Fluorescence , Models, Chemical , Phosphatidylcholines/chemistry , Photochemistry , Surface Properties , Time Factors
16.
Biophys Chem ; 50(1-2): 139-45, 1994 May.
Article in English | MEDLINE | ID: mdl-8011928

ABSTRACT

The biological membrane may be viewed as a two-dimensional solvent system, the lipid bilayer, in which the membrane components are either dissolved (intrinsic) or to the surface of which they are adsorbed (extrinsic). The solvent bilayer is made up of a large number of lipid chemical species derived from a few lipid classes. Experience with model systems has shown that in mixed lipid bilayers immiscibility of components is the rule rather than the exception. This suggests that the bilayer in a biological membrane is not a homogenous two-dimensional fluid but rather a heterogenous system consisting of a mosaic of co-existing phase domains in which the phases differ both chemically and physically from each other. A consequence of this is the physical separation of membrane components, including proteins, based on their phase solubility. The percolation in such a phase-separated system then determines the range over which free lateral diffusion is possible and bimolecular reactions can occur. Phase percolation and long-range translational diffusion have been studied in model systems using the fluorescence recovery after photobleaching (FRAP) technique, and theoretical work shows that bimolecular reaction yields can be seriously reduced in phase-separated membranes. Transitions between percolating and non-percolating states in biomembranes is proposed as a potential trigger mechanism in the control of membrane physiology.


Subject(s)
Lipid Bilayers/chemistry , Models, Biological , Cell Membrane/chemistry , Chemical Phenomena , Chemistry, Physical , Diffusion
17.
Biophys J ; 64(2): 399-412, 1993 Feb.
Article in English | MEDLINE | ID: mdl-8457666

ABSTRACT

The lateral diffusion of a phospholipid probe is studied in bilayers of binary mixtures of dimyristoylphosphatidylcholine (DMPC)/cholesterol and distearoylphosphatidylcholine (DSPC)/cholesterol and in the ternary system DMPC/DSPC/cholesterol using fluorescence recovery after photobleaching. An approximate phase diagram for the ternary system, as a function of temperature and cholesterol concentration, was obtained using differential scanning calorimetry and the phase diagrams of the binary systems. This phase diagram is similar to those of the phospholipid/cholesterol binary mixtures. In bilayers where solid and liquid phases coexist, the diffusion results are interpreted in terms of phase percolation. The size of the liquid-phase domains is estimated using percolation theory. In the ternary system, addition of cholesterol up to approximately 20 mol% shifts the percolation threshold to lower area fractions of liquid, but the size of the liquid-phase domains does not change. Above approximately 20 mol% cholesterol, the liquid phase is always connected. The size of solid-phase domains clusters is estimated using a model recently developed (Almeida, P.F.F., W.L.C. Vaz, and T.E. Thompson. 1992. Biochemistry. 31:7198-7210). For cholesterol concentrations up to 20 mol%, the size of solid-phase domain units does not change. Beyond 20 mol%, cholesterol causes the size of the solid units to decrease.


Subject(s)
Cholesterol/chemistry , Lipid Bilayers/chemistry , Phosphatidylcholines/chemistry , Biophysical Phenomena , Biophysics , Diffusion , Dimyristoylphosphatidylcholine/chemistry , Models, Chemical , Molecular Probes , Photochemistry , Thermodynamics
18.
Biophys J ; 63(6): 1506-12, 1992 Dec.
Article in English | MEDLINE | ID: mdl-1489909

ABSTRACT

It has recently been shown (Vaz, W.L.C., E.C.C. Melo, and T.E. Thompson. 1989. Biophys. J. 56:869-875; 1990. Biophys. J. 58:273-275) that in lipid bilayer membranes in which ordered and disordered phases coexist, the ordered phase can form a two-dimensional reticular structure that subdivides the coexisting disordered phase into a disconnected domain structure. Here we consider theoretically the yields of bimolecular reactions between membrane-localized reactants, when both the reactants and products are confined to the disordered phase. It is shown that compartmentalization of reactants in disconnected domains can lead to significant reductions in reaction yields. The reduction in yield was calculated for classical bimolecular processes and for enzyme-catalyzed reactions. These ideas can be used to explain certain experimental observations.


Subject(s)
Membranes/chemistry , Biophysical Phenomena , Biophysics , Enzymes/chemistry , Lipid Bilayers/chemistry , Macromolecular Substances , Membrane Proteins/chemistry , Models, Chemical , Molecular Conformation , Molecular Structure
19.
Biochemistry ; 31(31): 7198-210, 1992 Aug 11.
Article in English | MEDLINE | ID: mdl-1643051

ABSTRACT

Fluorescence recovery after photobleaching (FRAP) has recently been used to examine the percolation properties of coexisting phases in two-component, two-phase phosphatidylcholine bilayers [Vaz, W. L. C., Melo, E. C. C., & Thompson, T. E. (1989) Biophys. J. 56, 869-876]. We now report the use of FRAP to study two additional problems in similar systems. The first is the effect of solid-phase obstacles on the lateral diffusion in the fluid phase. The second is the question of whether or not, in a single bilayer, solid-phase domains in one monolayer are exactly superimposed on solid domains in the apposing monolayer. To address the first problem, the lateral diffusion of N-(7-nitrobenzoxa-2,3-diazol-4-yl)-1-palmitoyl-2-oleoylphosp hatidylethanolamine (NBD-POPE), a probe soluble only in the fluid phase when solid and fluid phases coexist, has been studied in the mixture N-lignoceroyldihydrogalactosylceramide (LigGalCer)/dipalmitoylphosphatidylcholine (DPPC). Percolation of the fluid phase occurs at a high mass fraction of solid phase. This indicates that the solid domains have a centrosymmetric shape, a characteristic which makes this a good experimental system to test theoretical simulations of diffusion in an archipelago. It is shown that agreement between theory and experiment is poor, a result that had already been observed when the obstacles were integral membrane proteins. We develop an effective-medium model for diffusion in two-phase systems which explains both our results and those obtained with integral proteins. The distinctive feature of the model is the consideration of an annular region around the obstacles where the lipids are more ordered than in the bulk fluid phase. The diffusion coefficient is then calculated by extending the free area model to two-phase systems, taking these annuli into account. The second question, the organization of the solid-phase domains across the lipid bilayer, is examined in the systems LigGalCer/DPPC and dimyristoylphosphatidylcholine (DMPC)/distearoylphosphatidylcholine (DSPC) by comparing the diffusion of a fluid-phase-soluble, gel-phase-insoluble lipid derivative which spans the two monolayers of a bilayer (NBD-membrane-spanning-phosphatidylethanolamine, NBD-msPE) with that of a probe which is restricted to a single monolayer. In LigGalCer/DPPC, 20:80, the distribution of solid domains in one of the monolayers is independent of the distribution in the apposing monolayer. In contrast, in DMPC/DSPC, 50:50, the solid domains in one monolayer are exactly superimposed upon the solid domains existing in the apposing monolayer.


Subject(s)
Lipid Bilayers , Diffusion , Fluorescence Polarization , Models, Theoretical
20.
Biochemistry ; 31(29): 6739-47, 1992 Jul 28.
Article in English | MEDLINE | ID: mdl-1637810

ABSTRACT

The technique of fluorescence recovery after photobleaching is used to perform an extensive study of the lateral diffusion of a phospholipid probe in the binary mixture dimyristoylphosphatidylcholine/cholesterol, above the melting temperature of the phospholipid. In the regions of the phase diagram where a single liquid phase exists, diffusion can be quantitatively described by free volume theory, using a modified Macedo-Litovitz hybrid equation. In the liquid-liquid immiscibility region, the temperature dependence of the diffusion coefficient is in excellent agreement with current theories of generalized diffusivities in composite two-phase media. A consistent interpretation of the diffusion data can be provided based essentially on the idea that the primary effect of cholesterol addition to the bilayer is to occupy free volume. On this basis, a general interpretation of the phase behavior of this mixture is also proposed.


Subject(s)
Cholesterol/chemistry , Dimyristoylphosphatidylcholine/chemistry , Lipid Bilayers , Diffusion , Kinetics , Mathematics , Models, Biological , Spectrometry, Fluorescence , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...