Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Nucleic Acids Res ; 48(12): 6824-6838, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32432721

ABSTRACT

RNA-seq experiments previously performed by our laboratories showed enrichment in intronic sequences and alterations in alternative splicing in dengue-infected human cells. The transcript of the SAT1 gene, of well-known antiviral action, displayed higher inclusion of exon 4 in infected cells, leading to an mRNA isoform that is degraded by non-sense mediated decay. SAT1 is a spermidine/spermine acetyl-transferase enzyme that decreases the reservoir of cellular polyamines, limiting viral replication. Delving into the molecular mechanism underlying SAT1 pre-mRNA splicing changes upon viral infection, we observed lower protein levels of RBM10, a splicing factor responsible for SAT1 exon 4 skipping. We found that the dengue polymerase NS5 interacts with RBM10 and its sole expression triggers RBM10 proteasome-mediated degradation. RBM10 over-expression in infected cells prevents SAT1 splicing changes and limits viral replication, while its knock-down enhances the splicing switch and also benefits viral replication, revealing an anti-viral role for RBM10. Consistently, RBM10 depletion attenuates expression of interferon and pro-inflammatory cytokines. In particular, we found that RBM10 interacts with viral RNA and RIG-I, and even promotes the ubiquitination of the latter, a crucial step for its activation. We propose RBM10 fulfills diverse pro-inflammatory, anti-viral tasks, besides its well-documented role in splicing regulation of apoptotic genes.


Subject(s)
Acetyltransferases/genetics , Dengue/genetics , Immunity, Innate/genetics , RNA-Binding Proteins/genetics , Alternative Splicing/genetics , Apoptosis/genetics , Dengue/virology , Dengue Virus/genetics , Dengue Virus/pathogenicity , Exons/genetics , HEK293 Cells , Host-Pathogen Interactions/genetics , Humans , Protein Isoforms/genetics , RNA Splicing/genetics , RNA-Seq , Virus Replication/genetics
2.
Hum Genet ; 136(9): 1093-1111, 2017 09.
Article in English | MEDLINE | ID: mdl-28497172

ABSTRACT

Next-generation sequencing has revolutionized clinical diagnostic testing. Yet, for a substantial proportion of patients, sequence information restricted to exons and exon-intron boundaries fails to identify the genetic cause of the disease. Here we review evidence from mRNA analysis and entire genomic sequencing indicating that pathogenic mutations can occur deep within the introns of over 75 disease-associated genes. Deleterious DNA variants located more than 100 base pairs away from exon-intron junctions most commonly lead to pseudo-exon inclusion due to activation of non-canonical splice sites or changes in splicing regulatory elements. Additionally, deep intronic mutations can disrupt transcription regulatory motifs and non-coding RNA genes. This review aims to highlight the importance of studying variation in deep intronic sequence as a cause of monogenic disorders as well as hereditary cancer syndromes.


Subject(s)
DNA, Neoplasm/genetics , Genes, Neoplasm , Introns , Mutation , Neoplastic Syndromes, Hereditary/genetics , DNA, Neoplasm/metabolism , Humans , Neoplastic Syndromes, Hereditary/metabolism
3.
Hum Mol Genet ; 24(10): 2784-95, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25652404

ABSTRACT

Current estimates indicate that approximately one-third of all disease-causing mutations are expected to disrupt splicing. Abnormal splicing often leads to disruption of the reading frame with introduction of a premature termination codon (PTC) that targets the mRNA for degradation in the cytoplasm by nonsense mediated decay (NMD). In addition to NMD there are RNA surveillance mechanisms that act in the nucleus while transcripts are still associated with the chromatin template. However, the significance of nuclear RNA quality control in the context of human genetic diseases is unknown. Here we used patient-derived lymphoblastoid cell lines as disease models to address how biogenesis of mRNAs is affected by splice site mutations. We observed that most of the mutations analyzed introduce PTCs and trigger mRNA degradation in the cytoplasm. However, for some mutant transcripts, RNA levels associated with chromatin were found down-regulated. Quantification of nascent transcripts further revealed that a subset of genes containing splicing mutations (SM) have reduced transcriptional activity. Following treatment with the translation inhibitor cycloheximide the cytoplasmic levels of mutant RNAs increased, while the levels of chromatin-associated transcripts remained unaltered. These results suggest that transcription-coupled surveillance mechanisms operate independently from NMD to reduce cellular levels of abnormal RNAs caused by SM.


Subject(s)
Genetic Diseases, Inborn/genetics , Mutation , RNA Splice Sites , RNA Stability , RNA, Messenger/metabolism , Codon, Nonsense , Humans , RNA Splicing , Transcription, Genetic
4.
Mol Microbiol ; 93(4): 645-63, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24946224

ABSTRACT

Trypanosoma brucei is a unicellular parasite that causes sleeping sickness in humans. Most of its transcription is constitutive and driven by RNA polymerase II. RNA polymerase I (Pol I) transcribes not only ribosomal RNA genes, but also protein-encoding genes, including variant surface glycoproteins (VSGs) and procyclins. In T. brucei, histone H1 (H1) is required for VSG silencing and chromatin condensation. However, whether H1 has a genome-wide role in transcription is unknown. Here, using RNA sequencing we show that H1 depletion changes the expression of a specific cohort of genes. Interestingly, the predominant effect is partial loss of silencing of Pol I loci, such as VSG and procyclin genes. Labelling of nascent transcripts with 4-thiouridine showed that H1 depletion does not alter the level of labelled Pol II transcripts. In contrast, the levels of 4sU-labelled Pol I transcripts were increased by two- to sixfold, suggesting that H1 preferentially blocks transcription at Pol I loci. Finally, we observed that parasites depleted of H1 grow almost normally in culture but they have a reduced fitness in mice, suggesting that H1 is important for host-pathogen interactions.


Subject(s)
Gene Expression Regulation , Histones/metabolism , RNA Polymerase I/antagonists & inhibitors , Transcription, Genetic , Trypanosoma brucei brucei/physiology , Animals , Disease Models, Animal , Gene Expression Profiling , Host-Pathogen Interactions , Mice , Regulon , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/metabolism , Trypanosomiasis, African/parasitology , Trypanosomiasis, African/pathology , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...