Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Toxicol Pathol ; 36(1): 11-19, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36683728

ABSTRACT

Laser resurfacing may be accompanied by unwanted side effects. The micro coring technology, designed to remove small skin columns, was developed to avoid the thermal injury associated with lasers. However, very limited data are available on its pre-clinical efficacy and safety. The novel robotic, fractional micro-coring device, AimeTM, was tested on four pigs, each treated in 12 sites, at 6 time-points, over the course of 28 days. Macroscopic and microscopic evaluation was performed at each of the 6 time-points during the 28-day follow-up. Macroscopically, treatment resulted in erythema and mild edema that quickly resolved. Microscopically, there was progressive re-coverage of the tested sites with complete, well differentiated, newly formed epidermis, associated with efficient elimination of the underlying excised dermis, which was replaced by maturing fibroplasia. Some of the sites demonstrated complete healing already after 7 days. No significant adverse events were noted with the use of the device. The use of the micro-coring device AimeTM in a porcine model for skin fractional micro-excision and resurfacing was effective and safe. The comprehensive gradual healing process shown in this study with detailed histopathological images can also serve as a basis for future pre-clinical studies of fractional ablative devices.

2.
Pharmaceutics ; 12(10)2020 Oct 05.
Article in English | MEDLINE | ID: mdl-33027965

ABSTRACT

Proper neuronal function requires strict maintenance of the brain's extracellular environment. Therefore, passage of molecules between the circulation and brain neuropil is tightly regulated by the blood-brain barrier (BBB). While the BBB is vital for normal brain function, it also restricts the passage of drugs, potentially effective in treating brain diseases, into the brain. Despite previous attempts, there is still an unmet need to develop novel approaches that will allow safe opening of the BBB for drug delivery. We have recently shown in experimental rodents and in a pilot human trial that low-frequency, high-amplitude repetitive transcranial magnetic stimulation (rTMS) allows the delivery of peripherally injected fluorescent and Gd-based tracers into the brain. The goals of this study were to characterize the duration and safety level of rTMS-induced BBB opening and test its capacity to enhance the delivery of the antitumor growth agent, insulin-like growth factor trap, across the BBB. We employed direct vascular and magnetic resonance imaging, as well as electrocorticography recordings, to assess the impact of rTMS on brain vascular permeability and electrical activity, respectively. Our findings indicate that rTMS induces a transient and safe BBB opening with a potential to facilitate drug delivery into the brain.

3.
Brain ; 143(6): 1826-1842, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32464655

ABSTRACT

Repetitive mild traumatic brain injury in American football players has garnered increasing public attention following reports of chronic traumatic encephalopathy, a progressive tauopathy. While the mechanisms underlying repetitive mild traumatic brain injury-induced neurodegeneration are unknown and antemortem diagnostic tests are not available, neuropathology studies suggest a pathogenic role for microvascular injury, specifically blood-brain barrier dysfunction. Thus, our main objective was to demonstrate the effectiveness of a modified dynamic contrast-enhanced MRI approach we have developed to detect impairments in brain microvascular function. To this end, we scanned 42 adult male amateur American football players and a control group comprising 27 athletes practicing a non-contact sport and 26 non-athletes. MRI scans were also performed in 51 patients with brain pathologies involving the blood-brain barrier, namely malignant brain tumours, ischaemic stroke and haemorrhagic traumatic contusion. Based on data from prolonged scans, we generated maps that visualized the permeability value for each brain voxel. Our permeability maps revealed an increase in slow blood-to-brain transport in a subset of amateur American football players, but not in sex- and age-matched controls. The increase in permeability was region specific (white matter, midbrain peduncles, red nucleus, temporal cortex) and correlated with changes in white matter, which were confirmed by diffusion tensor imaging. Additionally, increased permeability persisted for months, as seen in players who were scanned both on- and off-season. Examination of patients with brain pathologies revealed that slow tracer accumulation characterizes areas surrounding the core of injury, which frequently shows fast blood-to-brain transport. Next, we verified our method in two rodent models: rats and mice subjected to repeated mild closed-head impact injury, and rats with vascular injury inflicted by photothrombosis. In both models, slow blood-to-brain transport was observed, which correlated with neuropathological changes. Lastly, computational simulations and direct imaging of the transport of Evans blue-albumin complex in brains of rats subjected to recurrent seizures or focal cerebrovascular injury suggest that increased cellular transport underlies the observed slow blood-to-brain transport. Taken together, our findings suggest dynamic contrast-enhanced-MRI can be used to diagnose specific microvascular pathology after traumatic brain injury and other brain pathologies.


Subject(s)
Brain Concussion/diagnostic imaging , Brain Concussion/pathology , Magnetic Resonance Imaging/methods , Adolescent , Adult , Animals , Athletes , Blood-Brain Barrier/metabolism , Brain/pathology , Brain Ischemia/pathology , Chronic Traumatic Encephalopathy/pathology , Diffusion Tensor Imaging , Football/injuries , Humans , Male , Microvessels/diagnostic imaging , Rats , Rats, Sprague-Dawley , Stroke/pathology , Tauopathies/pathology , United States , White Matter/pathology , tau Proteins/metabolism
4.
Epilepsy Behav ; 101(Pt B): 106285, 2019 12.
Article in English | MEDLINE | ID: mdl-31711869

ABSTRACT

The blood-brain barrier (BBB), a unique anatomical and physiological interface between the central nervous system (CNS) and the peripheral circulation, is essential for the function of neural circuits. Interactions between the BBB, cerebral blood vessels, neurons, astrocytes, microglia, and pericytes form a dynamic functional unit known as the neurovascular unit (NVU). The NVU-BBB crosstalk plays a key role in the regulation of blood flow, response to injury, neuronal firing, and synaptic plasticity. Blood-brain barrier dysfunction (BBBD), a hallmark of brain injury, is a prominent finding in status epilepticus. Blood-brain barrier dysfunction is observed within the first hour of status epilepticus, and in epileptogenic brain regions, may last for months. Blood-brain barrier dysfunction was shown to have a role in astroglial dysfunction, neuroinflammation, increasing neural excitability, reduction of seizure threshold, excitatory synaptogenesis, impaired plasticity, and epileptogenesis. A key signaling pathway associated with BBBD-induced neurovascular dysfunction is the transforming growth factor beta (TGF-ß) proinflammatory pathway, activated by the extravasation of serum albumin into the brain when BBB functions are compromised. Specific small molecules blocking TGF-ß, and the nonspecific, Food and Drug Administration (FDA) approved blocker and angiotensin antagonist losartan, were shown to reduce BBBD and block epileptogenesis. With these encouraging preclinical data, we have developed imaging approach to quantitatively assess BBBD as a diagnostic, predictive, and pharmacodynamic biomarker after brain injury. Clinical trials in the foreseen future are expected to test the feasibility of BBB-targeted diagnostic coupled therapy in status epileptics and seizure disorders. This article is part of the Special Issue "Proceedings of the 7th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures".


Subject(s)
Blood-Brain Barrier/physiopathology , Brain/physiopathology , Status Epilepticus/physiopathology , Animals , Astrocytes/metabolism , Blood-Brain Barrier/metabolism , Brain/metabolism , Humans , Microglia/metabolism , Neurons/metabolism , Seizures/metabolism , Seizures/physiopathology , Status Epilepticus/metabolism , Transforming Growth Factor beta/metabolism
5.
Epilepsia ; 60(2): 322-336, 2019 02.
Article in English | MEDLINE | ID: mdl-30609012

ABSTRACT

OBJECTIVE: Blood-brain barrier (BBB) impairment, redistribution of pericytes, and disturbances in cerebral blood flow may contribute to the increased seizure propensity and neurological comorbidities associated with epilepsy. However, despite the growing evidence of postictal disturbances in microcirculation, it is not known how recurrent seizures influence pericytic membrane currents and subsequent vasodilation. METHODS: Here, we investigated successive changes in capillary neurovascular coupling and BBB integrity during recurrent seizures induced by 4-aminopyridine or low-Mg2+ conditions. To avoid the influence of arteriolar dilation and cerebral blood flow changes on the capillary response, we measured seizure-associated pericytic membrane currents, capillary motility, and permeability changes in a brain slice preparation. Arteriolar responses to 4-aminopyridine-induced seizures were further studied in anesthetized Sprague Dawley rats by using electrocorticography and tissue oxygen recordings simultaneously with intravital imaging of arteriolar diameter, BBB permeability, and cellular damage. RESULTS: Within the preserved vascular network in hippocampal slice cultures, pericytes regulated capillary diameter in response to vasoactive agents and neuronal activity. Seizures induced distinct patterns of membrane currents that contributed to the regulation of pericytic length. During the course of recurrent seizures, individual vasodilation responses eroded and BBB permeability increased, despite unaltered neurometabolic coupling. Reduced vascular responsiveness was associated with mitochondrial depolarization in pericytes. Subsequent capillary constriction preceded BBB opening, suggesting that pericyte injury mediates the breach in capillary integrity. In vivo findings were consistent with slice experiments, showing seizure-related neurovascular decoupling and BBB dysfunction in small cortical arterioles, accompanied by perivascular cellular injury despite normoxic conditions. SIGNIFICANCE: Our study presents a direct observation of gradually developing neurovascular decoupling during recurrent seizures and suggests pericytic injury as an inducer of vascular dysfunction in epilepsy.


Subject(s)
Blood-Brain Barrier/physiopathology , Capillaries/injuries , Capillary Permeability/physiology , Seizures/physiopathology , Animals , Brain/physiopathology , Capillaries/physiopathology , Cerebrovascular Circulation/physiology , Neurons/physiology , Neurovascular Coupling/physiology , Rats, Sprague-Dawley , Seizures/complications
6.
J Neurosci ; 36(29): 7727-39, 2016 07 20.
Article in English | MEDLINE | ID: mdl-27445149

ABSTRACT

UNLABELLED: The blood-brain barrier is a highly selective anatomical and functional interface allowing a unique environment for neuro-glia networks. Blood-brain barrier dysfunction is common in most brain disorders and is associated with disease course and delayed complications. However, the mechanisms underlying blood-brain barrier opening are poorly understood. Here we demonstrate the role of the neurotransmitter glutamate in modulating early barrier permeability in vivo Using intravital microscopy, we show that recurrent seizures and the associated excessive glutamate release lead to increased vascular permeability in the rat cerebral cortex, through activation of NMDA receptors. NMDA receptor antagonists reduce barrier permeability in the peri-ischemic brain, whereas neuronal activation using high-intensity magnetic stimulation increases barrier permeability and facilitates drug delivery. Finally, we conducted a double-blind clinical trial in patients with malignant glial tumors, using contrast-enhanced magnetic resonance imaging to quantitatively assess blood-brain barrier permeability. We demonstrate the safety of stimulation that efficiently increased blood-brain barrier permeability in 10 of 15 patients with malignant glial tumors. We suggest a novel mechanism for the bidirectional modulation of brain vascular permeability toward increased drug delivery and prevention of delayed complications in brain disorders. SIGNIFICANCE STATEMENT: In this study, we reveal a new mechanism that governs blood-brain barrier (BBB) function in the rat cerebral cortex, and, by using the discovered mechanism, we demonstrate bidirectional control over brain endothelial permeability. Obviously, the clinical potential of manipulating BBB permeability for neuroprotection and drug delivery is immense, as we show in preclinical and proof-of-concept clinical studies. This study addresses an unmet need to induce transient BBB opening for drug delivery in patients with malignant brain tumors and effectively facilitate BBB closure in neurological disorders.


Subject(s)
Blood-Brain Barrier/drug effects , Glutamic Acid/therapeutic use , Neuroprotective Agents/therapeutic use , 4-Aminopyridine/toxicity , Adult , Aged , Animals , Blood-Brain Barrier/diagnostic imaging , Brain Neoplasms/complications , Disease Models, Animal , Double-Blind Method , Female , Glioblastoma/complications , Humans , Male , Middle Aged , Permeability/drug effects , Potassium Channel Blockers/toxicity , Rats , Rats, Sprague-Dawley , Seizures/chemically induced , Stroke/chemically induced , Treatment Outcome
7.
Semin Cell Dev Biol ; 38: 43-52, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25455024

ABSTRACT

A dysfunctional BBB is a common feature in a variety of brain disorders, a fact stressing the need for diagnostic tools designed to assess brain vessels' permeability in space and time. Biological research has benefited over the years various means to analyze BBB integrity. The use of biomarkers for improper BBB functionality is abundant. Systemic administration of BBB impermeable tracers can both visualize brain regions characterized by BBB impairment, as well as lead to its quantification. Additionally, locating molecular, physiological content in regions from which it is restricted under normal BBB functionality undoubtedly indicates brain pathology-related BBB disruption. However, in-depth research into the BBB's phenotype demands higher analytical complexity than functional vs. pathological BBB; criteria which biomarker based BBB permeability analyses do not meet. The involvement of accurate and engineering sciences in recent brain research, has led to improvements in the field, in the form of more accurate, sensitive imaging-based methods. Improvements in the spatiotemporal resolution of many imaging modalities and in image processing techniques, make up for the inadequacies of biomarker based analyses. In pre-clinical research, imaging approaches involving invasive procedures, enable microscopic evaluation of BBB integrity, and benefit high levels of sensitivity and accuracy. However, invasive techniques may alter normal physiological function, thus generating a modality-based impact on vessel's permeability, which needs to be corrected for. Non-invasive approaches do not affect proper functionality of the inspected system, but lack in spatiotemporal resolution. Nevertheless, the benefit of medical imaging, even in pre-clinical phases, outweighs its disadvantages. The innovations in pre-clinical imaging and the development of novel processing techniques, have led to their implementation in clinical use as well. Specialized analyses of vessels' permeability add valuable information to standard anatomical inspections which do not take the latter into consideration.


Subject(s)
Blood-Brain Barrier/diagnostic imaging , Animals , Blood Vessels/cytology , Blood Vessels/pathology , Blood Vessels/physiology , Blood-Brain Barrier/anatomy & histology , Blood-Brain Barrier/physiology , Brain/cytology , Brain/pathology , Brain/physiology , Capillary Permeability , Humans , Magnetic Resonance Imaging , Radiography
8.
J Cereb Blood Flow Metab ; 34(11): 1791-801, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25160672

ABSTRACT

Focal cerebral ischemia is among the main causes of death and disability worldwide. The ischemic core often progresses, invading the peri-ischemic brain; however, assessing the propensity of the peri-ischemic brain to undergo secondary damage, understanding the underlying mechanisms, and adjusting treatment accordingly remain clinically unmet challenges. A significant hallmark of the peri-ischemic brain is dysfunction of the blood-brain barrier (BBB), yet the role of disturbed vascular permeability in stroke progression is unclear. Here we describe a longitudinal in vivo fluorescence imaging approach for the evaluation of cortical perfusion, BBB dysfunction, free radical formation and cellular injury using the photothrombosis vascular occlusion model in male Sprague Dawley rats. Blood-brain barrier dysfunction propagated within the peri-ischemic brain in the first hours after photothrombosis and was associated with free radical formation and cellular injury. Inhibiting free radical signaling significantly reduced progressive cellular damage after photothrombosis, with no significant effect on blood flow and BBB permeability. Our approach allows a dynamic follow-up of cellular events and their response to therapeutics in the acutely injured cerebral cortex.


Subject(s)
Blood-Brain Barrier , Brain Ischemia , Cerebral Cortex , Cerebrovascular Circulation , Intracranial Thrombosis , Stroke , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Blood-Brain Barrier/physiopathology , Brain Ischemia/metabolism , Brain Ischemia/pathology , Brain Ischemia/physiopathology , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Cerebral Cortex/physiopathology , Disease Models, Animal , Free Radicals/metabolism , Intracranial Thrombosis/metabolism , Intracranial Thrombosis/pathology , Intracranial Thrombosis/physiopathology , Male , Permeability , Rats , Rats, Sprague-Dawley , Stroke/metabolism , Stroke/pathology , Stroke/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...