Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(22): 16153-16159, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38787649

ABSTRACT

The tight-binding method is used to investigate the electronic and magnetic properties of borophene nano-ribbons (BNRs) in the presence of a perpendicular magnetic field. Most BNRs exhibit metallic characteristics due to edge bands. Additionally, the appearance of Landau levels (LLs) is strongly influenced by the edge states, contrasting with the sheet platform which produces distinct LLs. We also investigated single atomic vacancy disorders in BNRs and observed localized vacancy states (LVSs) resulting from atomic disorder. Both LVSs and LLs are influenced by the edge states, underscoring that the electronic and magnetic properties of BNRs are strongly edge-dependent. This aspect is crucial for consideration in experimental, theoretical, and computational studies.

2.
J Phys Condens Matter ; 34(11)2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34929675

ABSTRACT

We investigate the dynamic optical transition of monolayer silicene in the presence of external electric and exchange fields within the low-energy tight-binding model. Applying external electric and exchange fields breaks the silicene band structure spin and valley degeneracies. Three phases of silicene corresponding to different strengths of perpendicular electric field with respect to the spin-orbit coupling (Δz< Δso, Δz= Δsoand Δz> Δso) are considered. We obtain the spin-valley-dependent optical responses to the incoming circularly polarized light using the Kubo formula. We show and discuss how the magnitude and direction of the transverse and longitudinal optical responses of such a system change with the electric and exchange fields. Our calculations suggest that the intraband part of the longitudinal optical response as well as the initial point of the interband part have strong dependencies on the exchange field. Furthermore, we show that one of the spin subbands plays a dominant role in the response to polarized light. Depending on the type of incident light polarization, the dominant subband may change. Our results shed light on the relation between silicene dynamic optical responses and externally applied fields.

3.
Phys Chem Chem Phys ; 23(30): 16417-16422, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34318830

ABSTRACT

Using first-principles many-body perturbation theory, we investigate the optical properties of 8-Pmmn borophene at two levels of approximations; the GW method considering only the electron-electron interaction and the GW in combination with the Bethe-Salpeter equation including electron-hole coupling. The band structure exhibits anisotropic Dirac cones with semimetallic character. The optical absorption spectra are obtained for different light polarizations and we predict strong optical absorbance anisotropy. The absorption peaks undergo a global redshift when the electron-hole interaction is taken into account due to the formation of bound excitons which have an anisotropic excitonic wave function.

4.
J Phys Condens Matter ; 33(18)2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33721855

ABSTRACT

We theoretically study the Coulomb drag resistivity and plasmon modes behavior for a system composed of two parallelp-type doped GaS monolayers with Mexican-hat valence energy band using the Boltzmann transport theory formalism. We investigate the effect of temperature,T, carrier density,p, and layer separation,d, on the plasmon modes and drag resistivity within the energy-independent scattering time approximation. Our results show that the density dependence of plasmon modes can be approximated byp0.5. Also, the calculations suggest ad0.2and ad0.1dependencies for the acoustic and optical plasmon energies, respectively. Interestingly, we obtain that the behavior of drag resistivity in the double-layer metal monochalcogenides swings between the behavior of a double-quantum well system with parabolic dispersion and that of a double-quantum wire structure with a large carrier density of states. In particular, the transresistivity value reduces exponentially with increasing the distance between layers. Furthermore, the drag resistivity changes asT2/p4(T2.8/p4.5) at low (intermediate) temperatures. Finally, we compare the drag resistivity as a function of temperature for GaS with other Mexican-hat materials including GaSe and InSe and find that it adopts higher values when the metal monochalcogenide has smaller Mexican-hat height.

5.
J Phys Condens Matter ; 30(15): 155307, 2018 Apr 18.
Article in English | MEDLINE | ID: mdl-29504943

ABSTRACT

We calculate the thermal conductivity of free-standing silicene using the phonon Boltzmann transport equation within the relaxation time approximation. In this calculation, we investigate the effects of sample size and different scattering mechanisms such as phonon-phonon, phonon-boundary, phonon-isotope and phonon-vacancy defect. We obtain some similar results to earlier works using a different model and provide a more detailed analysis of the phonon conduction behavior and various mode contributions. We show that the dominant contribution to the thermal conductivity of silicene, which originates from the in-plane acoustic branches, is about 70% at room temperature and this contribution becomes larger by considering vacancy defects. Our results indicate that while the thermal conductivity of silicene is significantly suppressed by the vacancy defects, the effect of isotopes on the phononic transport is small. Our calculations demonstrate that by removing only one of every 400 silicon atoms, a substantial reduction of about 58% in thermal conductivity is achieved. Furthermore, we find that the phonon-boundary scattering is important in defectless and small-size silicene samples, especially at low temperatures.

6.
J Phys Condens Matter ; 28(28): 285301, 2016 07 20.
Article in English | MEDLINE | ID: mdl-27221580

ABSTRACT

We theoretically study the Coulomb drag resistivity in a double-layer electron system with highly anisotropic parabolic band structure using Boltzmann transport theory. As an example, we consider a double-layer phosphorene on which we apply our formalism. This approach, in principle, can be tuned for other double-layered systems with paraboloidal band structures. Our calculations show the rotation of one layer with respect to another layer can be considered a way of controlling the drag resistivity in such systems. As a result of rotation, the off-diagonal elements of the drag resistivity tensor have non-zero values at any temperature. In addition, we show that the anisotropic drag resistivity is very sensitive to the direction of momentum transfer between two layers due to highly anisotropic inter-layer electron-electron interaction and also the plasmon modes. In particular, the drag anisotropy ratio, [Formula: see text], can reach up to [Formula: see text]3 by changing the temperature. Furthermore, our calculations suggest that including the local field correction in the dielectric function changes the results significantly. Finally, We examine the dependence of drag resistivity and its anisotropy ratio on various parameters like inter-layer separation, electron density, short-range interaction and insulating substrate/spacer.

SELECTION OF CITATIONS
SEARCH DETAIL
...