Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 235: 116597, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37442255

ABSTRACT

Digestate is a rich source of nutrients that can be applied in agricultural fields as fertilizer or irrigation water. However, most of the research about application of digestate have focused on its agronomic properties and neglected the potential harm of the presence of contaminants of emerging concern (CECs). Aadvanced oxidation processes (AOPs) have proved to be effective for removing these compounds from drinking water, yet there are some constrains to treat wastewater and digestate mainly due to their complex matrix. In this study, the feasibility to remove different CECs from digestate using O3 and O3/H2O2 was assessed, and the general effect of the matrix in the oxidation was explained. While the lab-scale ozonation provided an ozone dose of 1.49 mg O3/mg DOC in 5 h treatment, almost all the compounds were removed at a lower ozone dose of maximum 0.48 mg O3/mg DOC; only ibuprofen required a higher dose of 1.1 mg O3/mg DOC to be oxidized. The digestate matrix slowed down the kinetic ozonation rate to approximately 1% compared to the removal rate in demineralized water. The combined treatment (O3/H2O2) showed the additional contribution of H2O2 by decreasing the ozone demand by 59-75% for all the compounds. The acute toxicity of the digestate, measured by the inhibition of Vibrio fisheries luminescence, decreased by 18.1% during 5 h ozonation, and by 34% during 5 h O3/H2O2 treatment. Despite the high ozone consumption, the ozone dose (mg O3/mg DOC) required to remove all CECs from digestate supernatant was in the range or lower than what has been reported for other (waste-)water matrix, implying that ozonation can be considered as a post-AD treatment to produce cleaner stream for agricultural purposes.


Subject(s)
Ozone , Water Pollutants, Chemical , Water Purification , Sewage , Hydrogen Peroxide , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Wastewater , Water , Oxidation-Reduction
2.
Environ Technol ; 42(19): 3036-3047, 2021 Aug.
Article in English | MEDLINE | ID: mdl-31987004

ABSTRACT

Anaerobic ammonia oxidation to nitrogen gas using nitrite as the electron acceptor (anammox process) is considered a cost-effective solution for nitrogen removal after an anaerobic pre-treatment process. In this study, we conducted a laboratory-scale experiment to develop a single-stage partial nitritation-anammox process in a sponge-based trickling filter (STF) reactor, inoculated with anammox sludge, simulating the treatment of anaerobically pretreated concentrated domestic sewage without mechanical oxygen control. The influent ammonia concentration was 100 mg-N·L-1. The KLa of the STF reactor was higher than those observed for conventional activated sludge processes. The STF reactor performed at 89.8 ± 8.2% and 42.7 ± 16.9% ammonia and TN removal efficiency, respectively, with a nitrogen loading rate of 0.55 ± 0.20 kg-N·m-3·day-1 calculated based on sponge volume. Microbial community analysis of the STF-retained sludge indicated that both autotrophic and heterotrophic nitrogen removal occurred in the reactor.


Subject(s)
Bioreactors , Wastewater , Autotrophic Processes , Denitrification , Nitrogen , Oxidation-Reduction , Sewage
SELECTION OF CITATIONS
SEARCH DETAIL
...