Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Anim Nutr ; 13: 31-49, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37009071

ABSTRACT

The goal of this review article, based on a systematic literature search, is to critically assess the state of knowledge and experimental methodologies used to delineate the conversion and metabolism of the 2 methionine (Met) sources DL-methionine (DL-Met) and DL-2-hydroxy-4-(methylthio) butanoic acid (HMTBa). The difference in the chemical structures of HMTBa and DL-Met indicates that these molecules are absorbed and metabolized differently in animals. This review explores the methodologies used to describe the 2-step enzymatic conversion of the 3 enantiomers (D-HMTBa, L-HMTBa and D-Met) to L-Met, as well as the site of conversion at the organ and tissue levels. Extensive work was published documenting the conversion of HMTBa and D-Met into L-Met and, consequently, the incorporation into protein using a variety of in vitro techniques, such as tissue homogenates, cell lines, primary cell lines, and everted gut sacs of individual tissues. These studies illustrated the role of the liver, kidney, and intestine in the conversion of Met precursors into L-Met. A combination of in vivo studies using stable isotopes and infusions provided evidence of the wide conversion of HMTBa to L-Met by all tissues and how some tissues are net users of HMTBa, whereas others are net secreters of L-Met derived from HMTBa. Conversion of D-Met to L-Met in organs other than the liver and kidney is poorly documented. The methodology cited in the literature to determine conversion efficiency ranged from measurements of urinary, fecal, and respiratory excretion to plasma concentration and tissue incorporation of isotopes after intraperitoneal and oral infusions. Differences observed between these methodologies reflect differences in the metabolism of Met sources rather than differences in conversion efficiency. The factors affecting conversion efficiency are explored in this paper and are mostly associated with extreme dietary conditions, such as noncommercial crystalline diets that are very deficient in total sulfur amino acids with respect to requirements. Implications in the diversion of the 2 Met sources toward transsulfuration over transmethylation pathways are discussed. The strengths and weaknesses of some methodologies used are discussed in this review. From this review, it can be concluded that due to the inherent differences in conversion and metabolism of the 2 Met sources, the experimental methodologies (e.g., selecting different organs at different time points or using diets severely deficient in Met and cysteine) can impact the conclusions of the study and may explain the apparent divergences of conclusion found in the literature. It is recommended when conducting studies or reviewing the literature to properly select the experimental models that allow for differences in how the 2 Met precursors are converted to L-Met and metabolized by the animal to enable a proper comparison of their bioefficacy.

2.
Anim Nutr ; 12: 159-170, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36712403

ABSTRACT

This literature review evaluates the absorption of methionine (Met) sources such as 2-hydroxy-4-methylthiobutyric acid (HMTBa), its calcium salts (HMTBa-Ca), and DL-methionine (DL-Met) by focusing on the state of knowledge regarding the absorption mechanism, experimental methodology, and factors affecting their absorption. The 2 Met sources differ in mechanism and site of absorption due to differences in their chemical characteristics and enzymatic conversion. This review addresses diffusion- and transport-mediated absorption systems for amino acids and carboxylic compounds, best elucidated by in vitro, ex vivo, and in vivo experimental models. Opportunities and limitations in the use of radioisotopes to depict absorption sites as well as host and microbial metabolism are described. Physiological and environmental conditions that lead to changes in gut absorptive capacity and the impact of Met source absorption are also evaluated. This review concludes that any comparison between HMTBa and DL-Met should consider their different behaviors during the absorption phase. Hence, the chemical characteristics of these 2 molecules entail different absorption sites and mechanisms, from passive absorption in the case of HMTBa and HMTBa-Ca to active transporters for DL-Met, HMTBa, and HMTBa-Ca. In addition, the different conversion modes of these 2 molecules further differentiate their absorption modes. Considering these important differences, it is easier to understand the apparent divergence between the conclusions of existing publications. When comparing these 2 molecules, it is recommended to properly adapt to the conditions under which the absorption of Met sources is evaluated.

3.
Front Physiol ; 13: 991320, 2022.
Article in English | MEDLINE | ID: mdl-36479344

ABSTRACT

Coccidiosis is a major intestinal challenge that causes economic loss to the broiler industry. Two battery cage studies were conducted to evaluate the effect of trace minerals, source and dose of methionine on growth performance and gut health of broilers subjected to Eimeria challenge. Experiment #1 consisted of 9 treatments of 2 × 2 × 2 factorial design + 1 arrangement with main factors of methionine (Met) sources (DL-Met vs. 2-hydroxy-4-(methylthio)-butanoic acid (HMTBa)), total sulfur amino acid (TSAA) levels (high vs. low; ±5% of recommended level), and sources of trace minerals (TM) Zn:Cu:Mn in the form Inorganic trace minerals (ITM) in sulfates (80:20:100ppm) vs. mineral methionine hydroxy-analogue bis-chelate (MMHAC, 40:10:50ppm), each with 8 pens of 10 birds. Experiment #2 consisted of 2 treatments--ITM [ZnSO4:tribasic copper chloride (TBCC):MnSO4 110:125:120ppm] and MMHAC (Zn:Cu:Mn, 40:30:40ppm), each with 36 pens of 10 birds. All birds except for treatment 9 in experiment #1 were orally gavaged with 1x, 4x and 16x recommended dose of coccidiosis vaccine on d0, d7 and d14, respectively. Data were subjected to one-way and/or three-way ANOVA, and means were separated by Fisher's protected LSD test with significance at p ≤ 0.05. In experiment #1, factorial analysis revealed the main effects of TSAA level and TM, but not Met source. High TSAA level improved body weight and cumulative feed intake at 14, 20, and 27d. MMHAC improved body weight at 14, and 27d; feed intake at 14, 20, and 27d; and cumulative FCR at 27d vs. sulfates. One-way ANOVA analysis showed that birds fed MMHAC and high levels of TSAA regardless of Met source had similar body weight as unchallenged birds on d27. In experiment #2, MMHAC improved body weight and cumulative FCR, and reduced jejunal IL-17A gene expression on d28. In summary, in broilers subjected to Eimeria challenge, supplementation of the reduced levels of bis-chelated trace minerals MMHAC improved growth performance compared to high levels of ITM (sulfates or TBCC), which might partially result from better immune response, high levels of TSAA improved growth performance, Met source had no effect. Supplementation of both bis-chelated trace minerals MMHAC and high levels of TSAA could overcome the growth performance challenge issue due to coccidiosis.

4.
Front Physiol ; 13: 948378, 2022.
Article in English | MEDLINE | ID: mdl-36267581

ABSTRACT

Trace mineral minerals Zn, Cu, and Mn play important roles in breeder production and progeny performance. The objective of this study was to determine maternal supplementation of trace mineral minerals on breeder production and progeny growth and development. A total of 540 broiler breeders, Cobb 500 (Slow feathering; 0-66 weeks old) were assigned to one of three treatment groups with the same basal diet and three different supplemental trace minerals: ITM-inorganic trace minerals in sulfates: 100, 16, and 100 ppm of Zn, Cu, and Mn respectively; MMHAC -mineral methionine hydroxy analog chelate: 50, 8, and 50 ppm of bis-chelated MINTREX®Zn, Cu and Mn (Novus International, Inc.), and TMAAC - trace minerals amino acid complex: 50, 8, and 50 ppm of Zn, Cu, and Mn. At 28 weeks of age, eggs from breeder treatments were hatched for progeny trial, 10 pens with 6 males and 6 female birds per pen were fed a common diet with ITM for 45 days. Breeder production, egg quality, progeny growth performance, mRNA expression of gut health associated genes in breeder and progeny chicks were measured. Data were analyzed by one-way ANOVA; means were separated by Fisher's protected LSD test. A p-Value ≤ 0.05 was considered statistically different and 0.1 was considered numerical trend. Breeders on ITM treatment had higher (p < 0.05) body weight (BW), weight gain and lower (p < 0.05) feed conversion ratio (FCR) from 0 to 10 weeks, when compared to birds fed MMHAC. MMHAC significantly improved egg mass by 3 g (p < 0.05) and FCR by 34 points (0.05 < p < 0.1) throughout the reproductive period (26-66 weeks) in comparison to ITM. MMHAC improved (p < 0.01) egg yolk color versus (vs.) ITM and TMAAC in all periods, except 28 weeks, increased (p < 0.01) eggshell thickness and resistance vs. TMAAC at 58 weeks, and reduced (p < 0.05) jejunal NF-κB gene expression vs. TMAAC at 24 weeks. There was a significant reduction in tibial dry matter weight, Seedor index and resistance for the breeders that received MMHAC and/or TMAAC when compared to ITM at 18 weeks. Lower seedor index but numerically wider tibial circumference was seen in hens fed MMHAC at 24 weeks, and wider tibial circumference but lower tibial resistance in hens fed TMAAC at 66 weeks. Maternal supplementation of MMHAC in breeder hens increased (p < 0.0001) BW vs. ITM and TMAAC at hatching, reduced (p < 0.05) feed intake vs. ITM at d14 and d28, and improved (p < 0.01) FCR and performance index vs. TMAAC at d28, reduced (p < 0.01) NF-κB gene expression and increased (p < 0.05) A20 gene expression vs. TMAAC on d0 and vs. ITM on d14, reduced (p < 0.05) TLR2 gene expression vs. ITM on d0 and vs. TMAAC on d14, increased (p < 0.05) MUC2 gene expression vs. both ITM and TMAAC on d45 in progeny jejunum. Overall, these results suggest that supplementation with lower levels of MHA-chelated trace minerals improved breeder production and egg quality and reduced breeder jejunal inflammation while maintaining tibial development in comparison to those receiving higher inorganic mineral supplementation, and it also carried over the benefits to progeny with better growth performance, less jejunal inflammation and better innate immune response and gut barrier function in comparison to ITM and/or TMAAC.

5.
Front Physiol ; 13: 991318, 2022.
Article in English | MEDLINE | ID: mdl-36817619

ABSTRACT

Copper (Cu) is widely used at high levels as growth promoter in poultry, the alternative source of Cu to replace the high level of inorganic Cu at poultry farm remains to be determined. Three floor pen experiments were conducted to evaluate the effects of Cu methionine hydroxy-analogue chelate (Cu-MHAC, MINTREX®Cu, Novus International, Inc.) on growth performance and gut health in broilers in comparison to CuSO4 and/or tribasic copper chloride (TBCC). There were 3 treatments in experiment#1 (0, 30 and 75 ppm Cu-MHAC) and experiment#2 (15 and 30 ppm Cu-MHAC, and 125 ppm CuSO4), and 4 treatments in experiment #3 (15 and 30 ppm Cu-MHAC, 125 ppm CuSO4 and 125 ppm TBCC) with nine replicates pens of 10-13 birds in each treatment. The levels of other minerals were equal among all treatments within each experiment. All birds were orally gavaged with a coccidiosis vaccine at 1x recommended dose on d0 in experiment#1 and #2 and 10x recommended dose on d15 in experiment #3. Data were analyzed by one-way ANOVA, means were separated by Fisher's protected LSD test. A p ≤ 0.05 was considered statistically different. In experiment #1, 30 and 75 ppm Cu-MHAC improved FCR during grower phase, increased jejunal villus height and reduced jejunal crypt depth, 30 ppm Cu-MHAC increased cecal Lactobacillus spp. abundance in 41 days broilers. In experiment #2, compared to CuSO4, 15ppm Cu-MHAC increased cumulative performance index in 28 days broilers, 15 and/or 30 ppm Cu-MHAC improved gut morphometry, and 30 ppm Cu-MHAC reduced the abundance of E. coli and Enterobacteriaceae in cecum in 43 days broilers. In experiment #3, 15 ppm and 30 ppm Cu-MHAC improved FCR vs. CuSO4 during starter phase, reduced the percentage of E. coli of total bacteria vs. TBCC, 30 ppm Cu-MHAC increased the percentages of Lactobacillus acidophilus, Lactobacillus spp. and Clostridium cluster XIVa of total bacteria vs. both CuSO4 and TBCC in the cecum of 27 days broilers. In summary, low doses of Cu-MHAC had comparable growth performance to high dose of TBCC and CuSO4 while improving gut microflora and gut morphometry in broilers subject to coccidiosis vaccination or coccidia challenge, indicating that low doses of bis-chelated Cu could be used as a complimentary strategy to improve animal gut health.

6.
Animals (Basel) ; 11(11)2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34827875

ABSTRACT

This study aimed to investigate the effect of increasing the standardized ileal digestible (SID) total sulfur amino acid to lysine (TSAA:Lys) on the growth performance of nursery pigs raised with or without antibiotics (AGP) and to determine the optimal SID TSAA:Lys in nursery pigs raised without AGP. In Exp. 1, 924 nursery pigs (7.9 ± 1.3 kg), blocked by initial BW and sex, were randomly allotted to one of six treatments, with seven pens per treatment and twenty-two pigs per pen. The treatments were arranged in a 2 × 3 factorial design, with two AGP levels (0 or 50 mg/kg Carbodox) and three levels of SID TSAA:Lys (51.0, 58.5 or 66.0%). In Exp. 2, 990 weaned piglets (5.1 ± 0.9 kg), blocked by initial BW and sex, were randomly allotted to one of five dietary treatments (SID TSAA:Lys at 51, 58, 65, 72 or 79%) in the absence of AGP, with nine pens per treatment and twenty-two pigs per pen. Competing heteroskedastic models including broken-line linear (BLL), broken-line quadratic (BLQ), and quadratic polynomial (QP) were fitted for the growth performance data to estimate the optimal TSAA:Lys. In Exp. 1, AGP supplementation increased (p < 0.05) ADG and ADFI during the 21 d period. Increasing SID TSAA:Lys in the diets with AGP did not affect growth performance; however, increasing SID TSAA:Lys in the diets without AGP resulted in a linear increase (p < 0.05) in ADG and G:F. In Exp. 2, the best-fitting models for ADG and G:F from d 0 to 21 post-weaning were BLL, which yielded the optimal SID TSAA:Lys of 62% and 72%, respectively. The best-fitting models for ADG and G:F from d 21 to 42 post-weaning were BLL, which yielded the optimal SID TSAA:Lys of 59% and 58%, respectively. In conclusion, SID TSAA to Lys requirements under an antibiotic-free feeding regime during the first 21 d post-weaning were 62% and 72% in terms of ADG and G:F, respectively, whereas an SID TSAA:Lys of approximately 58% was required to maximize ADG and G:F for the late nursery phase.

7.
Front Physiol ; 12: 663409, 2021.
Article in English | MEDLINE | ID: mdl-33889089

ABSTRACT

Wooden breast (WB) is a degenerative myopathy seen in modern broiler birds resulting in quality downgrade of breast fillets. Affected filets show increased toughness both before as well as after cooking and have decreased water holding capacity and marinade pick up compared to normal fillets. Although the exact etiology is unknown, the circulatory insufficiency and increased oxidative stress in the breast muscles of modern broiler birds could be resulting in damage and degeneration of muscle fibers leading to myopathies. Three independent experiments were conducted to evaluate the effect of various dietary interventions on the incidence of WB when birds are exposed to oxidative stress associated with feeding oxidized fat and mild heat stress. Feed additives such as dietary antioxidant [Ethoxyquin (ETX)], mineral methionine hydroxy analog chelate (MMHAC) of Zn, Cu, and Mn, and organic selenium (Org Se) were tested at recommended levels. In experiment 1, ETX reduced (P < 0.05) the incidence of severe WB induced by oxidized fat diet. The magnitude of improvement in percentage of normal (no WB) filets and reduction in muscle lipid peroxidation was greater (P < 0.05) when ETX and MMHAC were fed together as shown by experiment 2. In birds exposed to mild heat stress (Experiment 3), feeding MMHAC by itself reduced (P < 0.05) tissue damage by reducing incidence of tibial head lesions, skin scratches, breast blisters, in addition to increasing the incidence of normal (no WB) fillets. When MMHAC was combined with ETX and Org Se, further improvement (P < 0.05) in normal (no WB) filets was observed. In summary, under different oxidative stress conditions, dietary intervention programs that contain ETX, MMHA-Zn, -Cu, and -Mn and Org Se can improve performance and increase carcass integrity, reducing problems, such as WB, either independently or with additive effect. This effect is most likely attained by simultaneously improving the exogenous and endogenous antioxidant status, reducing oxidative stress, and improving tissue healing process of the bird.

8.
Biol Trace Elem Res ; 199(12): 4582-4592, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33432510

ABSTRACT

The present study investigated the interactive effects of copper sources and a high level of phytase on growth performance, nutrient digestibility, tissue mineral concentrations, and plasma parameters in nursery pigs. Weaning piglets (N = 192; 6.06 ± 0.99 kg), blocked by body weight, were randomly allotted to 1 of 4 dietary treatments, with 12 pens per treatment and 4 pigs per pen. A basal diet for each phase was formulated to meet nutrient requirements for nursery pigs with the exception that standardized total tract digestibility (STTD) P was reduced by 0.12% and Ca was adjusted to achieve Ca/STTD P = 2.15. The 4 dietary treatments were arranged in a 2 × 2 factorial design, with 2 Cu sources (125 mg/kg Cu from copper methionine hydroxy analogue chelate (Cu-MHAC) or copper sulfate (CuSO4)) and 2 phytase levels (0 or 1500 phytase units (FTU)/kg). Results showed that there was an interaction (P < 0.05) between Cu sources and phytase on ADG during days 0-41. When phytase was not present in the diets (P deficient), there was no difference between the two Cu sources in terms of ADG during days 0-41, whereas with phytase in the diets, Cu-MHAC tended to improve (P < 0.10) ADG during days 0-41 compared with CuSO4. Pigs fed Cu-MHAC had greater apparent total tract digestibility (ATTD) of neutral and acid detergent fiber and STTD of P than those fed CuSO4. Phytase increased (P < 0.05) growth performance, ATTD of Ca and P, and plasma inositol and growth hormone concentrations. In conclusion, Cu-MHAC may be more effective in improving growth rate than CuSO4 when phytase was supplemented at 1500 FTU/kg. Cu-MHAC enhanced fiber and P digestibility regardless of phytase, compared with CuSO4. Phytase addition in P-deficient diets was effective in improving growth performance, Ca and P digestibility, and plasma inositol and growth hormone concentrations.


Subject(s)
6-Phytase , Phosphorus, Dietary , Animal Feed/analysis , Animals , Copper , Diet , Dietary Supplements , Digestion , Feces , Gastrointestinal Tract , Minerals , Nutrients , Phosphorus , Swine
9.
Transl Anim Sci ; 4(4): txaa201, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33354657

ABSTRACT

Two studies were conducted to determine the effects of a novel Escherichia coli phytase expressed in Pseudomonas fluorescens on growth performance, bone mineralization, and nutrient digestibility in pigs fed corn-soybean meal diets. In experiment 1, 160 nursery pigs (9.79 ± 1.22 kg) were randomly allotted to one of four treatments with 10 pens per treatment and four pigs per pen. Phase I and phase II diets were provided from d 0 to d 14 and d 14 to d 28, respectively. Treatments included: positive control (PC) with all nutrients meeting requirements; negative control (NC) with standardized total tract digestible (STTD) P reduced by 0.15% and 0.14% compared with PC in phase I and phase II, respectively; and NC diets containing 250 or 500 units of phytase (FTU) per kilogram. Results demonstrated that pigs fed PC had greater (P < 0.01) ADG and G:F for the overall experimental period, and greater (P < 0.01) bone ash and P concentrations, compared with pigs fed NC or diets with phytase supplementation. Pigs fed diets containing phytase had greater (P < 0.01) ADG and G:F for the overall experimental period compared with pigs fed the NC diet without phytase, and bone ash and P weights were increased (P < 0.01) as well. In experiment 2, 63 growing barrows (56.25 ± 2.54 kg) were blocked by BW and randomly allotted to one of seven treatments with nine pens per treatment and one pig per pen. A basal corn-soybean meal diet was formulated to meet nutrient requirements for growing pigs with the exception that STTD P was reduced by 0.18% compared with the requirement, and Ca was included to achieve a Ca:STTD P ratio of 2.15. Six additional diets were formulated by adding 250, 500, 750, 1,000, 1,500, or 2,000 FTU/kg of phytase to the basal diet. Pigs were fed experimental diets for 12 d with 7 d of adaptation and 5 d of fecal sample collection. Results indicated that there was a linear (P < 0.01) increase in apparent total tract digestibility of ash and ether extract, and STTD of Ca and P also increased (linear, P < 0.05) in response to increasing doses of phytase. Increasing phytase levels in the diets resulted in increase (quadratic, P < 0.05) in apparent ileal digestibility of Arg, His, Ile, Lys, Trp, Asp, and Glu. In conclusion, the novel E. coli phytase was effective in increasing growth performance, bone mineralization, and Ca and P digestibility in pigs fed corn-soybean meal-based diets. Results also indicated that this phytase had the potential to enhance the digestibility of fat and certain AA.

10.
J Anim Sci ; 98(9)2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32841352

ABSTRACT

The study was conducted to determine the effects of mineral methionine hydroxy analog chelate (MMHAC) partially replacing inorganic trace minerals in sow diets on epigenetic and transcriptional changes in the muscle and jejunum of progeny. The MMHAC is zinc (Zn), manganese (Mn), and copper (Cu) chelated with methionine hydroxy analog (Zn-, Mn-, and Cu-methionine hydroxy analog chelate [MHAC]). On day 35 of gestation, 60 pregnant sows were allotted to two dietary treatments in a randomized completed block design using parity as a block: 1) ITM: inorganic trace minerals with zinc sulfate (ZnSO4), manganese oxide (MnO), and copper sulfate (CuSO4) and 2) CTM: 50% of ITM was replaced with MMHAC (MINTREX trace minerals, Novus International Inc., St Charles, MO). Gestation and lactation diets were formulated to meet or exceed NRC requirements. On days 1 and 18 of lactation, milk samples from 16 sows per treatment were collected to measure immunoglobulins (immunoglobulin G, immunoglobulin A, and immunoglobulin M) and micromineral concentrations. Two pigs per litter were selected to collect blood to measure the concentration of immunoglobulins in the serum, and then euthanized to collect jejunal mucosa, jejunum tissues, and longissimus muscle to measure global deoxyribonucleic acid methylation, histone acetylation, cytokines, and jejunal histomorphology at birth and day 18 of lactation. Data were analyzed using Proc MIXED of SAS. Supplementation of MMHAC tended to decrease (P = 0.059) body weight (BW) loss of sows during lactation and tended to increase (P = 0.098) piglet BW on day 18 of lactation. Supplementation of MMHAC increased (P < 0.05) global histone acetylation and tended to decrease myogenic regulatory factor 4 messenger ribonucleic acid (mRNA; P = 0.068) and delta 4-desaturase sphingolipid1 (DEGS1) mRNA (P = 0.086) in longissimus muscle of piglets at birth. Supplementation of MMHAC decreased (P < 0.05) nuclear factor kappa B mRNA in the jejunum and DEGS1 mRNA in longissimus muscle and tended to decrease mucin-2 (MUC2) mRNA (P = 0.057) and transforming growth factor-beta 1 (TGF-ß1) mRNA (P = 0.057) in the jejunum of piglets on day 18 of lactation. There were, however, no changes in the amounts of tumor necrosis factor-alpha, interleukin-8, TGF-ß, MUC2, and myogenic factor 6 in the tissues by MMHAC. In conclusion, maternal supplementation of MMHAC could contribute to histone acetylation and programming in the fetus, which potentially regulates intestinal health and skeletal muscle development of piglets at birth and weaning, possibly leading to enhanced growth of their piglets.


Subject(s)
Immunoglobulins/blood , Methionine/analogs & derivatives , Minerals/metabolism , Swine/physiology , Animal Feed/analysis , Animals , Diet/veterinary , Female , Lactation , Methionine/pharmacology , Muscle Development/drug effects , Parity , Pregnancy , Swine/genetics , Swine/growth & development , Trace Elements/pharmacology , Weaning
11.
Transl Anim Sci ; 4(2): txaa083, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32705073

ABSTRACT

This study investigated the interactive effects of zinc (Zn) and copper (Cu) sources and phytase on growth performance, oxidative status, mineral digestibility, tissue mineral concentrations, and gut morphology in nursery pigs. A total of 288 weaning barrows [body weight (BW) = 5.71 ± 0.81 kg], blocked by initial BW, were randomly allotted to one of eight dietary treatments, with nine pens per treatment and four pigs per pen. The eight dietary treatments were arranged in 2 × 2 × 2 factorial design, with two Zn sources [2,000, 2,000, and 100 mg/kg Zn from zinc oxide (ZnO) during phase 1 (days 1-14) and phase 2 (days 15-28), and phase 3 (days 29-42), respectively; 100 mg/kg Zn from zinc methionine hydroxy analogue chelate (Zn-MHAC) from phases 1 to 3], two Cu sources [150, 80, and 80 mg/kg Cu from copper sulfate (CuSO4) or copper methionine hydroxy analogue chelate (Cu-MHAC) during phases 1-3, respectively], and two phytase inclusion levels (0 or 500 FTU/kg). Results showed that ZnO supplementation at 2,000 mg/kg Zn significantly increased average daily feed intake (ADFI; P = 0.01) and average daily gain (ADG; P = 0.03) during phase 1 compared to Zn-MHAC group; however, Zn-MHAC supplementation tended (P = 0.06) to improve gain to feed ratio (G:F) during phase 2 compared to ZnO group. There were no differences (P > 0.10) between ZnO and Zn-MHAC groups in terms of ADG, ADFI, and G:F during the entire nursery period. Compared with CuSO4, Cu-MHAC tended to increase ADG (P = 0.07) and G:F (P = 0.08) during the entire nursery period. Phytase supplementation significantly increased ADG (P < 0.01), ADFI (P < 0.01), and G:F (P < 0.01) during the entire nursery period compared with no phytase supplementation. There was a significant interaction (P < 0.01) between Zn source and phytase on standardized total tract digestibility (STTD) of phosphorus (P), whereas there was no interaction (P = 0.21) between Cu sources and phytase on STTD of P. However, there was a significant interaction between Cu sources and phytase on calcium (Ca; P = 0.02) and P (P = 0.03) concentrations in metacarpal bones and G:F in phase 2 (P = 0.09). Furthermore, pigs fed diets containing Zn-MHAC tended to have lower ileum villus width (P = 0.07), compared with those fed diets containing ZnO, and pigs fed diets containing Cu-MHAC tended to have lower plasma malondialdehyde concentration (P = 0.10) compared with those fed diets containing CuSO4. In conclusion, under the conditions of the current study, ZnO supplementation at 2,000 mg/kg Zn was only effective in the first 2 wk postweaning, whereas Zn-MHAC supplementation at 100 mg/kg Zn could achieve better feed efficiency during phase 2 compared to pharmacological levels of ZnO, therefore, leading to no difference of growth performance in the entire nursery period. Low levels of Zn-MHAC may improve phytase efficacy on degrading phytate P compared to pharmacological levels of ZnO. Cu-MHAC may be more effective to promote growth compared to CuSO4, which may be partially driven by reduced oxidative stress. Results also indicated that Cu-MHAC might exert a synergistic effect with phytase on improving feed efficiency and bone mineralization.

12.
Sci Rep ; 7(1): 1894, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28507338

ABSTRACT

Footpad dermatitis (FPD) is used in the poultry industry as an animal welfare criterion to determine stocking density. Trace minerals (TM) play a role in skin integrity and wound healing. This study evaluated the impact of TM on FPD and consisted of 3 treatments supplemented with 0 (NTM), low (LTM) and high (HTM) TM levels in the same basal diet. On d21, 71% birds in all treatments developed mild FPD and pens were top-dressed with dry litter to promote FPD healing. Compared to NTM, LTM reduced area under the curve (AUC) of FPD lesion scores during d21-42, HTM reduced the AUC of FPD lesion scores during d7-21 and d21-42. LTM improved growth performance on d14, HTM improved growth performance on d14 and d28. LTM and/or HTM increased gene expression of VEGF, TIMP3, TIMP4, MMP13, ITGA2, ITGA3 and CD40, which promoted collagen synthesis, deposition and organization; cell migration, matrix remodeling, and angiogenesis. LTM and/or HTM increased inflammation by upregulating TNFα and IL-1ß during the early wound healing phase and reduced inflammation by downregulating IL-1ß during the late wound healing phase. Our findings showed that TM not only improved growth performance but also reduced FPD development by promoting FPD wound healing.


Subject(s)
Dermatitis/veterinary , Poultry Diseases/etiology , Poultry Diseases/pathology , Trace Elements , Wound Healing , Animals , Biomarkers , Chickens , Cytokines/metabolism , Inflammation Mediators/metabolism , Male , Poultry Diseases/metabolism
13.
Poult Sci ; 96(8): 2992-2999, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28499042

ABSTRACT

White Striping (WS) and Woody Breast (WB) are 2 conditions that adversely affect consumer acceptance as well as quality of poultry meat and meat products. Both WS and WB are characterized with degenerative myopathic changes. Previous studies showed that WS and WB in broiler fillets could result in higher ultimate pH, increased drip loss, and decreased marinade uptake. The main objective of the present study was to compare the proteomic profiles of muscle tissue (n = 5 per group) with either NORM (no or few minor myopathic lesions) or SEV (with severe myopathic changes). Proteins were extracted from these samples and analyzed using a hybrid LTQ-OrbitrapXL mass spectrometer (LC-MS/MS). Over 800 proteins were identified in the muscle samples, among which 141 demonstrated differential (P < 0.05) expression between NORM and SEV. The set of differentially (P < 0.05) expressed proteins was uploaded to Ingenuity Pathway Analysis® (IPA) software to determine the associated biological networks and pathways. The IPA analysis showed that eukaryotic initiation factor-2 (eIF-2) signaling, mechanistic target of rapamycin (mTOR) signaling, as well as regulation of eIF4 and p70S6K signaling were the major canonical pathways up-regulated (P < 0.05) in SEV muscle compared to NORM. The up-regulation of these pathways indicate an increase in protein synthesis which could be part of the rapid growth as well as cellular stress associated with ongoing muscle degeneration and the attempt to repair tissue damage in SEV birds. Furthermore, IPA analysis revealed that glycolysis and gluconeogenesis were the major down-regulated (P < 0.05) canonical pathways in SEV with respect to NORM muscle. Down-regulation of these pathways could be the reason for higher ultimate pH seen in SEV muscle samples indicating reduced glycolytic potential. In conclusion, comparison of proteomic profiles of NORM and SEV muscle samples showed differences in protein profile which explains some of the observed differences in meat quality parameters. Future studies based on these differences could provide valuable insights into various cellular changes and identification of biomarkers related to WS and WB.


Subject(s)
Avian Proteins/metabolism , Carbohydrate Metabolism , Chickens , Meat/analysis , Muscular Diseases/veterinary , Poultry Diseases/pathology , Animals , Muscular Diseases/etiology , Muscular Diseases/pathology , Poultry Diseases/etiology , Proteome , Proteomics
14.
Asian-Australas J Anim Sci ; 30(7): 985-993, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28111437

ABSTRACT

OBJECTIVE: The objective of this study was to evaluate increasing doses of a novel microbial phytase (Cibenza Phytaverse, Novus International, St. Charles, MO, USA) on standardized total tract digestibility (STTD) of P in canola meal (CM), corn, corn-derived distiller's dried grains with solubles (DDGS), rice bran (RB), sorghum, soybean meal (SBM), sunflower meal (SFM), and wheat. METHODS: Two cohorts of 36 pigs each (initial body weight = 78.5±3.7 kg) were randomly assigned to 2 rooms, each housing 36 pigs, and then allotted to 6 diets with 6 replicates per diet in a randomized complete block design. Test ingredient was the only dietary source of P and diets contained 6 concentrations of phytase (0, 125, 250, 500, 1,000, or 2,000 phytase units [FTU]/kg) with 0.4% of TiO2 as a digestibility marker. Feeding schedule for each ingredient was 5 d acclimation, 5 d fecal collection, and 4 d washout. The STTD of P increased (linear or exponential p≤0.001) with the inclusion of phytase for all ingredients. RESULTS: Basal STTD of P was 37.6% for CM, 37.6% for corn, 68.6% for DDGS, 10.3% for RB, 41.2% for sorghum, 36.7% for SBM, 26.2% for SFM, and 55.1% for wheat. The efficiency of this novel phytase to hydrolyze phytate is best described with a broken-line model for corn, an exponential model for CM, RB, SBM, SFM, and wheat, and a linear model for DDGS and sorghum. Based on best-fit model the phytase dose (FTU/kg) needed for highest STTD of P (%), respectively, was 735 for 64.3% in CM, 550 for 69.4% in corn, 160 for 55.5% in SBM, 1,219 for 57.8% in SFM, and 881 for 64.0% in wheat, whereas a maximum response was not obtained for sorghum, DDGS and RB within the evaluated phytase range of 0 to 2,000 FTU/kg. These differences in the phytase concentration needed to maximize the STTD of P clearly indicate that the enzyme does not have the same hydrolysis efficiency among the evaluated ingredients. CONCLUSION: Variations in enzyme efficacy to release P from phytate in various feedstuffs need to be taken into consideration when determining the matrix value for phytase in a mixed diet, which likely depends on the type and inclusion concentration of ingredients used in mixed diets for pigs. The use of a fixed P matrix value across different diet types for a given phytase concentration is discouraged as it may result in inaccurate diet formulation.

15.
Article in English | MEDLINE | ID: mdl-26933492

ABSTRACT

BACKGROUND: The goal of this study was to compare the antagonism of elevated dietary Cu (250 mg/kg) from CuSO4 on three different Zn sources (ZnSO4 · H2O; [Zn bis(-2-hydroxy-4-(methylthio)butanoic acid)], Zn(HMTBa)2, a chelated Zn methionine hydroxy analogue; and Zn-Methionine), as measured using multiple indices of animal performance in ROSS 308 broilers. METHODS: Three experiments were conducted in broiler chicks fed a semi-purified diet. All birds were fed a Zn-deficient diet (8.5 mg/kg diet) for 1 wk, and then provided with the experimental diets for 2 wks. RESULTS: Experiment 1 was a 2 × 2 factorial design with two levels of Cu (8 vs. 250 mg/kg diet from CuSO4) and two Zn sources at 30 mg/kg [ZnSO4 · H2O vs. Zn(HMTBa)2]. Elevated Cu impaired growth performance only in birds fed ZnSO4. Compared to ZnSO4 · H2O, Zn(HMTBa)2 improved feed intake (12 %; P < 0.001) and weight gain (12 %, P < 0.001) and the benefits were more pronounced in the presence of 250 mg/kg diet Cu. Experiment 2 was a dose titration of ZnSO4 · H2O and Zn(HMTBa)2 at 30, 45, 60, and 75 mg/kg diet in the presence of 250 mg/kg CuSO4. Feed:gain was decreased and tibia Zn was increased with increasing Zn levels from 30 to 75 mg/kg. Birds fed Zn(HMTBa)2 consumed more food and gained more weight compared to birds fed ZnSO4, especially at lower supplementation levels (30 and 45 mg/kg; interaction P < 0,05). Experiment 3 compared two organic Zn sources (Zn(HMTBa)2 vs. Zn-Methionine) at 30 mg/kg with or without 250 mg/kg CuSO4. No interactions were observed between Zn sources and Cu levels on performance or tissue mineral concentrations. High dietary Cu decreased weight gain (P < 0.01). Tibia Cu and liver Cu were significantly increased with 250 mg/kg dietary Cu supplementation (P < 0.01). No difference was observed between the two Zn sources. CONCLUSIONS: Dietary 250 mg/kg Cu significantly impaired feed intake and weight gain in birds fed ZnSO4 · H2O, but had less impact in birds fed Zn(HMTBa)2. No difference was observed between the two organic zinc sources. These results are consistent with the hypothesis that chelated organic Zn is better utilized than inorganic zinc in the presence of elevated Cu.

16.
Arch Anim Nutr ; 60(4): 301-16, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16921927

ABSTRACT

The aim of this study was to evaluate effects on nutritional responses of supplemental DL-methionine and 2-hydroxy-4-(methylthio) butanoic acid (HMTBA) in a commercial-type diet in growing dogs. A nitrogen balance study was conducted as a randomized complete block design using 30 Pointer puppies (72-d-old; 5.5 kg). A corn and poultry byproduct meal based diet was supplemented with 0.1 or 0.2% DL-methionine or HMTBA on an equimolar basis. Organic matter and gross energy tended (p < 0.10) to be less digestible by dogs fed the 0.1% HMTBA diet compared with the 0.2% DL-methionine diet, but other nutrients were unaffected. Postprandial urinary calcium tended (p < 0.10) to be lower for the basal and HMTBA treatments. Fecal ammonia tended (p < 0.10) to be lower for the 0.1% HMTBA diet than for the 0.2% DL-methionine diet. At the levels tested, DL-methionine and HMTBA appear to act similarly when included in a corn and poultry by-product meal diet fed to young dogs.


Subject(s)
Digestion/drug effects , Dogs/metabolism , Energy Intake/drug effects , Methionine/analogs & derivatives , Methionine/pharmacology , Nitrogen/metabolism , Ammonia/analysis , Animal Feed , Animal Nutritional Physiological Phenomena , Animals , Blood Urea Nitrogen , Calcium/urine , Dietary Supplements , Dose-Response Relationship, Drug , Feces/chemistry , Methionine/administration & dosage , Random Allocation
17.
J Nutr ; 132(3): 382-6, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11880559

ABSTRACT

To investigate the presence of poly(A)(+) RNA that encode proteins capable of transporting L-methionine (L-Met) and/or DL-2-hydroxy-4-(methylthio) butanoic acid (HMB), Xenopus oocytes were injected with poly(A)(+) RNA isolated from broiler intestinal mucosa. Healthy oocytes at stage V or VI were collected from Xenopus laevis and microinjected with water, poly(A)(+) RNA or size-fractioned poly(A)(+) RNA. The ability of the injected oocytes to take up either L-Met or HMB was examined by incubating oocytes with [methyl-(3)H]-L-Met or [5-(14)C]-HMB. A greater uptake of L-Met (P < 0.01) and HMB (P < 0.05) by oocytes injected with poly(A)(+) RNA from the duodenum, jejunum and ileum of the small intestine was observed compared with water-injected oocytes. The greatest (P < 0.05) uptake occurred when poly(A)(+) RNA from the jejunum or ileum was injected. Injections from four different pools of sucrose gradient--fractionated poly(A)(+) RNA from all three intestinal segments induced (P < 0.01) L-Met uptake. There were three to four different pools of sucrose gradient--fractionated poly(A)(+) RNA from the duodenum, jejunum and ileum that induced (P < 0.05) HMB uptake. Uptake of HMB was greater at pH 5.5 than at pH 7.5 and was independent of Na(+). Uptake of L-Met induced by all four poly(A)(+) RNA pools decreased dramatically when Na(+) was removed from the uptake buffer, which indicated that the majority of L-Met uptake was Na(+)-dependent. These results indicate that there are multiple sized poly(A)(+) RNA that encode proteins capable of mediated transport of L-Met and/or HMB present in broiler intestinal mucosa.


Subject(s)
Carrier Proteins/genetics , Chickens/metabolism , Intestinal Mucosa/chemistry , Methionine/analogs & derivatives , Methionine/metabolism , RNA, Messenger/analysis , Animals , Biological Transport , Centrifugation, Density Gradient , Duodenum/chemistry , Hydrogen-Ion Concentration , Ileum/chemistry , Jejunum/chemistry , Kinetics , Male , Microinjections , RNA, Messenger/administration & dosage , RNA, Messenger/genetics , Sodium/pharmacology , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...