Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Vet Rec ; 194(6): e4071, 2024 03 16.
Article in English | MEDLINE | ID: mdl-38488609

ABSTRACT

Jose Vázquez-Boland, Jorge Val-Calvo and Mariela Scortti present a brief summary of the main aspects surrounding the recently identified multidrug-resistant Rhodococcus equi that emerged in the USA and the actions being taken to tackle the problem with support from the UK's Horserace Betting Levy Board.


Subject(s)
Actinomycetales Infections , Rhodococcus equi , Animals , Actinomycetales Infections/drug therapy , Actinomycetales Infections/epidemiology , Actinomycetales Infections/veterinary
2.
mBio ; 14(5): e0220723, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37796005

ABSTRACT

IMPORTANCE: A robust taxonomy is essential for the organized study of prokaryotes and the effective communication of microbial knowledge. The genus rank is the mainstay of biological classification as it brings together under a common name a group of closely related organisms sharing the same recent ancestry and similar characteristics. Despite the unprecedented resolution afforded by whole-genome sequencing in defining evolutionary relationships, a consensus approach for phylogenomics-based prokaryotic genus delineation remains elusive. Taxonomists use different demarcation criteria, sometimes leading to genus rank over-splitting and the creation of multiple new genera. This work reports a simple, reliable, and standardizable method that seeks to minimize subjectivity in genomics-based demarcation of prokaryotic genera, exemplified through application to the order Mycobacteriales. Formal descriptions of proposed taxonomic changes based on our study are included.


Subject(s)
Actinomycetales , Phylogeny , Genomics/methods
3.
mBio ; 14(1): e0322122, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36656016

ABSTRACT

Rapid phagosomal escape mediated by listeriolysin O (LLO) is a prerequisite for Listeria monocytogenes intracellular replication and pathogenesis. Escape takes place within minutes after internalization from vacuoles that are negative to the early endosomal Rab5 GTPase and positive to the late endosomal Rab7. Using mutant analysis, we found that the listerial invasin InlB was required for optimal intracellular proliferation of L. monocytogenes. Starting from this observation, we determined in HeLa cells that InlB promotes early phagosomal escape and efficient Rab7 acquisition by the Listeria-containing vacuole (LCV). Recruitment of the class III phosphoinositide 3-kinase (PI3K) Vps34 to the LCV and accumulation of its lipid product, phosphatidylinositol 3-phosphate (PI3P), two key endosomal maturation mediators, were also dependent on InlB. Small interfering RNA (siRNA) knockdown experiments showed that Vps34 was required for Rab7 recruitment and early (LLO-mediated) escape and supported InlB-dependent intracellular proliferation. Together, our data indicate that InlB accelerates LCV conversion into an escape-favorable Rab7 late phagosome via subversion of class III PI3K/Vps34 signaling. Our findings uncover a new function for the InlB invasin in Listeria pathogenesis as an intracellular proliferation-promoting virulence factor. IMPORTANCE Avoidance of lysosomal killing by manipulation of the endosomal compartment is a virulence mechanism assumed to be largely restricted to intravacuolar intracellular pathogens. Our findings are important because they show that cytosolic pathogens like L. monocytogenes, which rapidly escape the phagosome after internalization, can also extensively subvert endocytic trafficking as part of their survival strategy. They also clarify that, instead of delaying phagosome maturation (to allow time for LLO-dependent disruption, as currently thought), via InlB L. monocytogenes appears to facilitate the rapid conversion of the phagocytic vacuole into an escape-conducive late phagosome. Our data highlight the multifunctionality of bacterial virulence factors. At the cell surface, the InlB invasin induces receptor-mediated phagocytosis via class I PI3K activation, whereas after internalization it exploits class III PI3K (Vsp34) to promote intracellular survival. Systematically elucidating the mechanisms by which Listeria interferes with PI3K signaling all along the endocytic pathway may lead to novel anti-infective therapies.


Subject(s)
Listeria monocytogenes , Listeria , Humans , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Proliferation , HeLa Cells , Hemolysin Proteins/genetics , Phosphatidylinositol 3-Kinases/metabolism , Vacuoles/metabolism , Class III Phosphatidylinositol 3-Kinases
4.
Clin Microbiol Rev ; 36(1): e0006019, 2023 03 23.
Article in English | MEDLINE | ID: mdl-36475874

ABSTRACT

Listeria monocytogenes is a Gram-positive facultative intracellular pathogen that can cause severe invasive infections upon ingestion with contaminated food. Clinically, listerial disease, or listeriosis, most often presents as bacteremia, meningitis or meningoencephalitis, and pregnancy-associated infections manifesting as miscarriage or neonatal sepsis. Invasive listeriosis is life-threatening and a main cause of foodborne illness leading to hospital admissions in Western countries. Sources of contamination can be identified through international surveillance systems for foodborne bacteria and strains' genetic data sharing. Large-scale whole genome studies have increased our knowledge on the diversity and evolution of L. monocytogenes, while recent pathophysiological investigations have improved our mechanistic understanding of listeriosis. In this article, we present an overview of human listeriosis with particular focus on relevant features of the causative bacterium, epidemiology, risk groups, pathogenesis, clinical manifestations, and treatment and prevention.


Subject(s)
Bacteremia , Listeria monocytogenes , Listeriosis , Pregnancy , Female , Infant, Newborn , Humans , Listeriosis/epidemiology , Listeriosis/microbiology , Listeriosis/prevention & control , Listeria monocytogenes/genetics , Risk Factors , Food Microbiology
5.
Emerg Infect Dis ; 28(9): 1899-1903, 2022 09.
Article in English | MEDLINE | ID: mdl-35997496

ABSTRACT

A multidrug-resistant clone of the animal and human pathogen Rhodococcus equi, MDR-RE 2287, has been circulating among equine farms in the United States since the 2000s. We report the detection of MDR-RE 2287 outside the United States. Our finding highlights the risk for MDR-RE spreading internationally with horse movements.


Subject(s)
Actinomycetales Infections , Horse Diseases , Rhodococcus equi , Actinomycetales Infections/drug therapy , Actinomycetales Infections/epidemiology , Actinomycetales Infections/veterinary , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial , Horse Diseases/epidemiology , Horses , Humans , Macrolides , Rhodococcus equi/genetics , Rifampin , United States
6.
Microorganisms ; 9(8)2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34442824

ABSTRACT

Strains of the food-borne pathogen Listeria (L.) monocytogenes have diverse virulence potential. This study focused on the virulence of three outbreak strains: the CC1 strain PF49 (serovar 4b) from a cheese-associated outbreak in Switzerland, the clinical CC2 strain F80594 (serovar 4b), and strain G6006 (CC3, serovar 1/2a), responsible for a large gastroenteritis outbreak in the USA due to chocolate milk. We analysed the genomes and characterized the virulence in vitro and in vivo. Whole-genome sequencing revealed a high conservation of the major virulence genes. Minor deviations of the gene contents were found in the autolysins Ami, Auto, and IspC. Moreover, different ActA variants were present. Strain PF49 and F80594 showed prolonged survival in the liver of infected mice. Invasion and intracellular proliferation were similar for all strains, but the CC1 and CC2 strains showed increased spreading in intestinal epithelial Caco2 cells compared to strain G6006. Overall, this study revealed long-term survival of serovar 4b strains F80594 and PF49 in the liver of mice. Future work will be needed to determine the genes and molecular mechanism behind the long-term survival of L. monocytogenes strains in organs.

7.
J Clin Microbiol ; 59(10): e0114921, 2021 09 20.
Article in English | MEDLINE | ID: mdl-34319806

ABSTRACT

Clonal multidrug resistance recently emerged in Rhodococcus equi, complicating the therapeutic management of this difficult-to-treat animal- and human-pathogenic actinomycete. The currently spreading multidrug-resistant (MDR) "2287" clone arose in equine farms upon acquisition, and coselection by mass macrolide-rifampin therapy, of the pRErm46 plasmid carrying the erm(46) macrolide-lincosamide-streptogramin resistance determinant, and of an rpoBS531F mutation. Here, we screened a collection of susceptible and macrolide-resistant R. equi strains from equine clinical cases using a panel of 15 antimicrobials against rapidly growing mycobacteria (RGM) and nocardiae and other aerobic actinomycetes (NAA). R. equi isolates-including MDR ones-were generally susceptible to linezolid, minocycline, tigecycline, amikacin, and tobramycin according to Staphylococcus aureus interpretive criteria, plus imipenem, cefoxitin, and ceftriaxone based on Clinical and Laboratory Standards Institute (CLSI) guidelines for RGM/NAA. Susceptibility to ciprofloxacin and moxifloxacin was borderline according to European Committee on Antimicrobial Susceptibility Testing (EUCAST) criteria. Molecular analyses linked pRErm46 to significantly increased MICs for trimethoprim-sulfamethoxazole and doxycycline, in addition to clarithromycin, within the RGM/NAA panel, and to streptomycin, spectinomycin, and tetracycline resistance. pRErm46 variants with spontaneous deletions in the class 1 integron (C1I) region, observed in ≈30% of erm(46)-positive isolates, indicated that the newly identified resistances were attributable to the C1I's sulfonamide (sul1) and aminoglycoside (aaA9) resistance cassettes and adjacent tetRA(33) determinant. Most MDR isolates carried the rpoBS531F mutation of the 2287 clone, while different rpoB mutations (S531L, S531Y) detected in two cases suggest the emergence of novel MDR R. equi strains.


Subject(s)
Rhodococcus equi , Rhodococcus , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial , Horses , Humans , Macrolides/pharmacology , Microbial Sensitivity Tests , Rhodococcus equi/genetics
8.
Front Vet Sci ; 8: 628239, 2021.
Article in English | MEDLINE | ID: mdl-33718470

ABSTRACT

Rhodococcus equi is an animal pathogen and zoonotic human opportunistic pathogen associated with immunosuppressive conditions. The pathogenicity of R. equi is linked to three animal host-associated virulence plasmids encoding a family of "Virulence Associated Proteins" (VAPs). Here, the PCR-based TRAVAP molecular typing system for the R. equi virulence plasmids was applied to 26 R. equi strains isolated between 2010 and 2016 at the Institute of Tropical Medicine "Pedro Kourí," Cuba, from individuals living with HIV/AIDS. TRAVAP detects 4 gene markers, traA common to the three virulence plasmids, and vapA, vapB, and vapN specific to each of the host-associated plasmid types (equine pVAPA, porcine pVAPB, and ruminant pVAPN). Of the 26 isolates, six were positive to the vapB (porcine-type) marker, 4 (15.4%) to the vapA (equine-type) marker, and 1 (3.8%) to the vapN (ruminant-type) marker. Most of the isolates 14 (53.8%) were negative to all TRAVAP markers, suggesting they lacked a virulence plasmid. To our knowledge, this work is the first to report the molecular characterization of R. equi isolates from Cuba. Our findings provide insight into the zoonotic origin of R. equi infections in people and the potential dispensability of the virulence plasmid in immunosuppressed patients.

9.
Emerg Infect Dis ; 27(2): 529-537, 2021 02.
Article in English | MEDLINE | ID: mdl-33496218

ABSTRACT

Multidrug resistance has been detected in the animal and zoonotic human pathogen Rhodococcus equi after mass macrolide/rifampin antibioprophylaxis in endemically affected equine farms in the United States. Multidrug-resistant (MDR) R. equi emerged upon acquisition of pRERm46, a conjugative plasmid conferring resistance to macrolides, lincosamides, streptogramins, and, as we describe, tetracycline. Phylogenomic analyses indicate that the increasing prevalence of MDR R. equi since it was first documented in 2002 is caused by a clone, R. equi 2287, attributable to coselection of pRErm46 with a chromosomal rpoBS531F mutation driven by macrolide/rifampin therapy. pRErm46 spillover to other R. equi genotypes has given rise to a novel MDR clone, G2016, associated with a distinct rpoBS531Y mutation. Our findings illustrate that overuse of antimicrobial prophylaxis in animals can generate MDR pathogens with zoonotic potential. MDR R. equi and pRErm46-mediated resistance are currently disseminating in the United States and are likely to spread internationally through horse movements.


Subject(s)
Actinomycetales Infections , Horse Diseases , Rhodococcus equi , Rhodococcus , Actinomycetales Infections/drug therapy , Actinomycetales Infections/epidemiology , Actinomycetales Infections/veterinary , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial , Horse Diseases/epidemiology , Horses , Macrolides/pharmacology , Rhodococcus equi/genetics , United States/epidemiology
10.
mBio ; 11(6)2020 12 15.
Article in English | MEDLINE | ID: mdl-33323519

ABSTRACT

Although all isolates of the foodborne pathogen Listeria monocytogenes are considered to be pathogenic, epidemiological evidence indicates that certain serovar 4b lineages are more likely to cause severe invasive (neuromeningeal, maternal-fetal) listeriosis. Recently described as L. monocytogenes "hypervirulent" clones, no distinctive bacterial trait has been identified so far that could account for the differential pathogenicity of these strains. Here, we discuss some preliminary observations in experimentally infected mice suggesting that serovar 4b hypervirulent strains may have a hitherto unrecognized capacity for prolonged in vivo survival. We propose the hypothesis that protracted survivability in primary infection foci in liver and spleen-the first target organs after intestinal translocation-may cause L. monocytogenes serovar 4b hypervirulent clones to have a higher probability of secondary dissemination to brain and placenta.


Subject(s)
Brain/microbiology , Listeria monocytogenes/genetics , Listeria monocytogenes/pathogenicity , Listeriosis/microbiology , Placenta/microbiology , Animals , Bacterial Translocation , Female , Genotype , Humans , Listeria monocytogenes/classification , Listeria monocytogenes/physiology , Liver/microbiology , Mice , Mice, Inbred BALB C , Phylogeny , Pregnancy , Virulence
11.
Int J Syst Evol Microbiol ; 70(5): 3572-3576, 2020 May.
Article in English | MEDLINE | ID: mdl-32375930

ABSTRACT

A recent taxonomic study confirmed the synonymy of Rhodococcus equi (Magnusson 1923) Goodfellow and Alderson 1977 and Corynebacterium hoagii (Morse 1912) Eberson 1918. As a result, both R. equi and C. hoagii were reclassified as Rhodococcus hoagii comb. nov. in application of the principle of priority of the Prokaryotic Code. Because R. equi is a well-known animal and zoonotic human pathogen, and a bacterial name solidly established in the veterinary and medical literature, we and others argued that the nomenclatural change may cause error and confusion and be potentially perilous. We have now additionally found that the nomenclatural type of the basonym C. hoagii, ATCC 7005T, does not correspond with the original description of the species C. hoagii in the early literature. Its inclusion as the C. hoagii type on the Approved Lists 1980 results in a change in the characters of the taxon and in C. hoagii designating two different bacteria. Moreover, ATCC 7005, the only strain in circulation under the name C. hoagii, does not have a well documented history; it is unclear why it was deposited as C. hoagii and a possible mix-up with a Corynebacterium (Rhodococcus) equi isolate is a reasonable assumption. We therefore request the rejection of Rhodococcus hoagii as a nomen ambiguum, nomen dubium and nomen perplexum in addition to nomen periculosum, and conservation of the name Rhodococcus equi, according to Rules 56ab of the Code.


Subject(s)
Corynebacterium/classification , Phylogeny , Rhodococcus equi/classification
12.
Appl Environ Microbiol ; 86(9)2020 04 17.
Article in English | MEDLINE | ID: mdl-32169935

ABSTRACT

Conjugation is one of the main mechanisms involved in the spread and maintenance of antibiotic resistance in bacterial populations. We recently showed that the emerging macrolide resistance in the soilborne equine and zoonotic pathogen Rhodococcus equi is conferred by the erm(46) gene carried on the 87-kb conjugative plasmid pRErm46. Here, we investigated the conjugal transferability of pRErm46 to 14 representative bacteria likely encountered by R. equi in the environmental habitat. In vitro mating experiments demonstrated conjugation to different members of the genus Rhodococcus as well as to Nocardia and Arthrobacter spp. at frequencies ranging from ∼10-2 to 10-6 pRErm46 transfer was also observed in mating experiments in soil and horse manure, albeit at a low frequency and after prolonged incubation at 22 to 30°C (environmental temperatures), not 37°C. All transconjugants were able to transfer pRErm46 back to R. equi Conjugation could not be detected with Mycobacterium or Corynebacterium spp. or several members of the more distant phylum Firmicutes such as Enterococcus, Streptococcus, or Staphylococcus Thus, the pRErm46 host range appears to span several actinobacterial orders with certain host restriction within the Corynebacteriales All bacterial species that acquired pRErm46 expressed increased macrolide resistance with no significant deleterious impact on fitness, except in the case of Rhodococcus rhodnii Our results indicate that actinobacterial members of the environmental microbiota can both acquire and transmit the R. equi pRErm46 plasmid and thus potentially contribute to the maintenance and spread of erm(46)-mediated macrolide resistance in equine farms.IMPORTANCE This study demonstrates the efficient horizontal transfer of the Rhodococcus equi conjugative plasmid pRErm46, recently identified as the cause of the emerging macrolide resistance among equine isolates of this pathogen, to and from different environmental Actinobacteria, including a variety of rhodococci as well as Nocardia and Arthrobacter spp. The reported data support the notion that environmental microbiotas may act as reservoirs for the endemic maintenance of antimicrobial resistance in an antibiotic pressurized farm habitat.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Gene Transfer, Horizontal , Genes, Bacterial , Macrolides/pharmacology , Rhodococcus equi/genetics , Actinobacteria/genetics , Plasmids/genetics
13.
mBio ; 10(5)2019 10 15.
Article in English | MEDLINE | ID: mdl-31615959

ABSTRACT

Antibiotic use has been linked to changes in the population structure of human pathogens and the clonal expansion of multidrug-resistant (MDR) strains among healthcare- and community-acquired infections. Here we present a compelling example in a veterinary pathogen, Rhodococcus equi, the causative agent of a severe pulmonary infection affecting foals worldwide. We show that the erm(46) gene responsible for emerging macrolide resistance among equine R. equi isolates in the United States is part of a 6.9-kb transposable element, TnRErm46, actively mobilized by an IS481 family transposase. TnRErm46 is carried on an 87-kb conjugative plasmid, pRErm46, transferable between R. equi strains at frequencies up to 10-3 The erm(46) gene becomes stabilized in R. equi by pRErm46's apparent fitness neutrality and wholesale TnRErm46 transposition onto the host genome. This includes the conjugally exchangeable pVAPA virulence plasmid, enabling the possibility of cotransfer of two essential traits for survival in macrolide-treated foals in a single mating event. Despite its high horizontal transfer potential, phylogenomic analyses show that erm(46) is paradoxically confined to a specific R. equi clone, 2287. R. equi 2287 also carries a unique rpoBS531F mutation conferring high-level resistance to rifampin, systematically administered together with macrolides against rhodococcal pneumonia on equine farms. Our data illustrate that under sustained combination therapy, several independent "founder" genetic events are concurrently required for resistance, limiting not only its emergence but also, crucially, horizontal spread, ultimately determining multiresistance clonality.IMPORTANCE MDR clades arise upon acquisition of resistance traits, but the determinants of their clonal expansion remain largely undefined. Taking advantage of the unique features of Rhodococcus equi infection control in equine farms, involving the same dual antibiotic treatment since the 1980s (a macrolide and rifampin), this study sheds light into the determinants of multiresistance clonality and the importance of combination therapy in limiting the dissemination of mobile resistance elements. Clinically effective therapeutic alternatives against R. equi foal pneumonia are currently lacking, and the identified macrolide-rifampin MDR clone 2287 has serious implications. Still at early stages of evolution and local spread, R. equi 2287 may disseminate globally, posing a significant threat to the equine industry and, also, public health due to the risk of zoonotic transmission. The characterization of the 2287 clone and its resistance determinants will enable targeted surveillance and control interventions to tackle the emergence of MDR R. equi.


Subject(s)
Anti-Bacterial Agents/pharmacology , Rhodococcus equi/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Bacterial/genetics , Macrolides/pharmacology , Microbial Sensitivity Tests , Rhodococcus equi/drug effects , Virulence/genetics
14.
Mol Microbiol ; 112(1): 1-15, 2019 07.
Article in English | MEDLINE | ID: mdl-31099908

ABSTRACT

Rhodococcus equi is the only recognized animal pathogenic species within an extended genus of metabolically versatile Actinobacteria of considerable biotechnological interest. Best known as a horse pathogen, R. equi is commonly isolated from other animal species, particularly pigs and ruminants, and causes severe opportunistic infections in people. As typical in the rhodococci, R. equi niche specialization is extrachromosomally determined, via a conjugative virulence plasmid that promotes intramacrophage survival. Progress in the molecular understanding of R. equi and its recent rise as a novel paradigm of multihost adaptation has been accompanied by an unusual nomenclatural instability, with a confusing succession of names: "Prescottia equi", "Prescotella equi", Corynebacterium hoagii and Rhodococcus hoagii. This article reviews current advances in the genomics, biology and virulence of this pathogenic actinobacterium with a unique mechanism of plasmid-transferable animal host tropism. It also discusses the taxonomic and nomenclatural issues around R. equi in the light of recent phylogenomic evidence that confirms its membership as a bona fide Rhodococcus.


Subject(s)
Rhodococcus equi/genetics , Rhodococcus equi/metabolism , Rhodococcus equi/pathogenicity , Actinomycetales Infections , Animals , Genomics , Horses , Phylogeny , Plasmids , Rhodococcus , Swine , Virulence
15.
Cell Rep ; 26(7): 1815-1827.e5, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30759392

ABSTRACT

To optimize fitness, pathogens selectively activate their virulence program upon host entry. Here, we report that the facultative intracellular bacterium Listeria monocytogenes exploits exogenous oligopeptides, a ubiquitous organic N source, to sense the environment and control the activity of its virulence transcriptional activator, PrfA. Using a genetic screen in adsorbent-treated (PrfA-inducing) medium, we found that PrfA is functionally regulated by the balance between activating and inhibitory nutritional peptides scavenged via the Opp transport system. Activating peptides provide essential cysteine precursor for the PrfA-inducing cofactor glutathione (GSH). Non-cysteine-containing peptides cause promiscuous PrfA inhibition. Biophysical and co-crystallization studies reveal that peptides inhibit PrfA through steric blockade of the GSH binding site, a regulation mechanism directly linking bacterial virulence and metabolism. L. monocytogenes mutant analysis in macrophages and our functional data support a model in which changes in the balance of antagonistic Opp-imported oligopeptides promote PrfA induction intracellularly and PrfA repression outside the host.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial/genetics , Listeria monocytogenes/pathogenicity , Peptides/metabolism , Ecosystem , Humans , Mutation , Virulence
16.
PLoS Genet ; 14(10): e1007727, 2018 10.
Article in English | MEDLINE | ID: mdl-30321174

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pgen.1007525.].

17.
PLoS Genet ; 14(9): e1007525, 2018 09.
Article in English | MEDLINE | ID: mdl-30180166

ABSTRACT

Elucidating the relationships between antimicrobial resistance and virulence is key to understanding the evolution and population dynamics of resistant pathogens. Here, we show that the susceptibility of the gram-positive bacterium Listeria monocytogenes to the antibiotic fosfomycin is a complex trait involving interactions between resistance and virulence genes and the environment. We found that a FosX enzyme encoded in the listerial core genome confers intrinsic fosfomycin resistance to both pathogenic and non-pathogenic Listeria spp. However, in the genomic context of the pathogenic L. monocytogenes, FosX-mediated resistance is epistatically suppressed by two members of the PrfA virulence regulon, hpt and prfA, which upon activation by host signals induce increased fosfomycin influx into the bacterial cell. Consequently, in infection conditions, most L. monocytogenes isolates become susceptible to fosfomycin despite possessing a gene that confers high-level resistance to the drug. Our study establishes the molecular basis of an epistatic interaction between virulence and resistance genes controlling bacterial susceptibility to an antibiotic. The reported findings provide the rationale for the introduction of fosfomycin in the treatment of Listeria infections even though these bacteria are intrinsically resistant to the antibiotic in vitro.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Epistasis, Genetic/physiology , Fosfomycin/pharmacology , Gene Expression Regulation, Bacterial/physiology , Listeria monocytogenes/physiology , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Bacterial/drug effects , Fosfomycin/therapeutic use , Gene Expression Regulation, Bacterial/drug effects , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Listeria monocytogenes/drug effects , Listeria monocytogenes/pathogenicity , Listeriosis/drug therapy , Listeriosis/microbiology , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Peptide Termination Factors/genetics , Peptide Termination Factors/metabolism , Regulon/physiology , Virulence/genetics
18.
Infect Immun ; 85(11)2017 11.
Article in English | MEDLINE | ID: mdl-28827366

ABSTRACT

The pathogenesis of Listeria monocytogenes depends on the ability of this bacterium to escape from the phagosome of the host cells via the action of the pore-forming toxin listeriolysin O (LLO). Expression of the LLO-encoding gene (hly) requires the transcriptional activator PrfA, and both hly and prfA genes are essential for L. monocytogenes virulence. Here, we used the hemolytic activity of LLO as a phenotypic marker to screen for spontaneous virulence-attenuating mutations in L. monocytogenes Sixty nonhemolytic isolates were identified among a collection of 57,820 confirmed L. monocytogenes strains isolated from a variety of sources (0.1%). In most cases (56/60; 93.3%), the nonhemolytic phenotype resulted from nonsense, missense, or frameshift mutations in prfA Five strains carried hly mutations leading to a single amino acid substitution (G299V) or a premature stop codon causing strong virulence attenuation in mice. In one strain, both hly and gshF (encoding a glutathione synthase required for full PrfA activity) were missing due to genomic rearrangements likely caused by a transposable element. The PrfA/LLO loss-of-function (PrfA-/LLO-) mutants belonged to phylogenetically diverse clades of L. monocytogenes, and most were identified among nonclinical strains (57/60). Consistent with the rare occurrence of loss-of-virulence mutations, we show that prfA and hly are under purifying selection. Although occurring at a low frequency, PrfA-/LLO- mutational events in L. monocytogenes lead to niche restriction and open an evolutionary path for obligate saprophytism in this facultative intracellular pathogen.


Subject(s)
Bacterial Proteins/genetics , Bacterial Toxins/genetics , Gene Expression Regulation, Bacterial , Heat-Shock Proteins/genetics , Hemolysin Proteins/genetics , Listeria monocytogenes/genetics , Listeria monocytogenes/pathogenicity , Mutation , Peptide Termination Factors/genetics , Amino Acid Substitution , Animals , Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Biological Evolution , Cloning, Molecular , Erythrocytes/microbiology , Heat-Shock Proteins/metabolism , Hemolysin Proteins/metabolism , Hemolysis , Humans , Listeria monocytogenes/classification , Listeria monocytogenes/growth & development , Listeriosis/microbiology , Listeriosis/pathology , Mice , Mice, Inbred BALB C , Peptide Termination Factors/metabolism , Phylogeny , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Selection, Genetic , Severity of Illness Index , Virulence
19.
mBio ; 8(3)2017 06 27.
Article in English | MEDLINE | ID: mdl-28655824

ABSTRACT

The Gram-positive facultative intracellular bacterium Listeria monocytogenes is the causative agent of listeriosis, a severe food-borne infection. Pregnant women are at risk of contracting listeriosis, which can potentially lead to miscarriage, stillbirth, preterm birth, and congenital neonatal infections. While other systemic bacterial infections may result in adverse pregnancy outcomes at comparable frequencies, L. monocytogenes has particular notoriety because fetal complications largely occur in the absence of overt illness in the mother, delaying medical intervention. Here, we briefly review the pathophysiology and mechanisms of maternofetal listeriosis, discussed in light of a recent mBio report on Listeria transplacental infection in a nonhuman primate model.


Subject(s)
Infectious Disease Transmission, Vertical , Listeria monocytogenes/pathogenicity , Listeriosis/physiopathology , Placenta/pathology , Female , Humans , Pregnancy
20.
Genome Biol Evol ; 9(5): 1241-1247, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28369330

ABSTRACT

The conjugative virulence plasmid is a key component of the Rhodococcus equi accessory genome essential for pathogenesis. Three host-associated virulence plasmid types have been identified the equine pVAPA and porcine pVAPB circular variants, and the linear pVAPN found in bovine (ruminant) isolates. We recently characterized the R. equi pangenome (Anastasi E, et al. 2016. Pangenome and phylogenomic analysis of the pathogenic actinobacterium Rhodococcus equi. Genome Biol Evol. 8:3140-3148.) and we report here the comparative analysis of the virulence plasmid genomes. Plasmids within each host-associated type were highly similar despite their diverse origins. Variation was accounted for by scattered single nucleotide polymorphisms and short nucleotide indels, while larger indels-mostly in the plasticity region near the vap pathogencity island (PAI)-defined plasmid genomic subtypes. Only one of the plasmids analyzed, of pVAPN type, was exceptionally divergent due to accumulation of indels in the housekeeping backbone. Each host-associated plasmid type carried a unique PAI differing in vap gene complement, suggesting animal host-specific evolution of the vap multigene family. Complete conservation of the vap PAI was observed within each host-associated plasmid type. Both diversity of host-associated plasmid types and clonality of specific chromosomal-plasmid genomic type combinations were observed within the same R. equi phylogenomic subclade. Our data indicate that the overall strong conservation of the R. equi host-associated virulence plasmids is the combined result of host-driven selection, lateral transfer between strains, and geographical spread due to international livestock exchanges.


Subject(s)
Evolution, Molecular , Genomic Islands , Rhodococcus equi/genetics , Actinomycetales Infections/microbiology , Actinomycetales Infections/veterinary , Animals , Cattle , Host-Pathogen Interactions , Phylogeny , Plasmids , Rhodococcus equi/isolation & purification , Rhodococcus equi/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...