Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Synapse ; 77(4): e22271, 2023 07.
Article in English | MEDLINE | ID: mdl-37130656

ABSTRACT

The cognitive functions of people over 60 years of age have been diminished, due to the structural and functional changes that the brain has during aging. The most evident changes are at the behavioral and cognitive level, with decreased learning capacity, recognition memory, and motor incoordination. The use of exogenous antioxidants has been implemented as a potential pharmacological option to delay the onset of brain aging by attenuating oxidative stress and neurodegeneration. Resveratrol (RSVL) is a polyphenol present in various foods, such as red fruits, and drinks, such as red wine. This compound has shown great antioxidant capacity due to its chemical structure. In this study, we evaluated the effect of chronic RSVL treatment on oxidative stress and cell loss in the prefrontal cortex, hippocampus, and cerebellum of 20-month-old rats, as well as its impact on recognition memory and motor behavior. Rats treated with RSVL showed an improvement in locomotor activity and in short- and long-term recognition memory. Likewise, the concentration of reactive oxygen species and lipid peroxidation decreased significantly in the group with RSVL, coupled with an improvement in the activity of the antioxidant system. Finally, with the help of hematoxylin and eosin staining, it was shown that chronic treatment with RSVL prevented cell loss in the brain regions studied. Our results demonstrate the antioxidant and neuroprotective capacity of RSVL when administered chronically. This strengthens the proposal that RSVL could be an important pharmacological option to reduce the incidence of neurodegenerative diseases that affect older adults.


Subject(s)
Antioxidants , Oxidative Stress , Rats , Animals , Resveratrol/pharmacology , Antioxidants/pharmacology , Antioxidants/therapeutic use , Brain/metabolism , Recognition, Psychology , Hippocampus/metabolism
2.
J Chem Neuroanat ; 129: 102256, 2023 04.
Article in English | MEDLINE | ID: mdl-36921908

ABSTRACT

The world population is aging rapidly, and chronic diseases associated are cardiometabolic syndrome, cancer, and neurodegenerative diseases. Oxidative stress and inflammation are typical hallmarks in them. Polyoxidovanadates (POVs) have shown interesting pharmacological actions against chronic diseases. This work aimed to evaluate the POV effect on hippocampal neuroinflammation, redox balance, and recognition memory in the aging of rats. Rats 18 months old were administered a daily dose of sodium metavanadate (MV), decavanadate (DV), Metformin (Metf), or MetfDeca for two months. Results showed that short-term and long-term recognition memory improved by 28 % and 16 % (DV), 19 % and 20 % (Metf), and 21 % and 27 % (MetfDeca). In hippocampi, reactive oxygen species, IL-1ß, and TNF-α, after DV, Metf, and MetfDeca decreased at similar concentrations to young adult control, while lipid peroxidation substantially ameliorated. Additionally, superoxide dismutase and catalase activity increased by 41 % and 42 % (DV), 39 % and 41 % (Metf), and 75 % and 73 % (MetfDeca). POV treatments reduced Nrf2 and GFAP immunoreactivity in CA1 (70-87.5 %), CA3 (60-80 %), and DG (57-89 %). Metformin treatment showed a minor effect, while MV treatment did not improve any parameters. Although DV, Metf, and MetfDeca treatments showed similar results, POVs doses were 16-fold fewer than Metformin. In conclusion, DV and MetfDeca could be pharmacological options to reduce age-related neuronal damage.


Subject(s)
Aging , Metformin , Rats , Animals , Oxidative Stress , Antioxidants/pharmacology , Metformin/pharmacology , Metformin/therapeutic use , Brain
3.
J Chem Neuroanat ; 129: 102237, 2023 04.
Article in English | MEDLINE | ID: mdl-36736441

ABSTRACT

The number of people diagnosed with metabolic syndrome (MetS) has increased dramatically to reach alarming proportions worldwide. The origin of MetS derives from bad eating habits and sedentary lifestyle. Most people consume foods high in carbohydrates and saturated fat. In recent years, it has been reported that alterations in insulin at the brain level could have an impact on the appearance of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, dementia, depression, and other types of disorders that compromise brain function. These alterations have been associated with damage to the structure and function of neurons located in the reptilian and limbic systems, a decrease in dendritic arborization and an exacerbated inflammatory state that impaired learning and memory and increased in the state of stress and anxiety. Although the molecular mechanisms induced by MetS to cause neurodegeneration are not fully understood. The aim of this study is to know the effect of the intake of hypercaloric diets on the structure and function of neurons located in the frontal cortex, hypothalamus and hippocampus and its impact on behavior in rats with metabolic syndrome. In conclusion, the present study illustrated that chronic exposure to hypercaloric diets, with a high content of sugars and saturated fatty acids, induces a proinflammatory state and exacerbates oxidative stress in brain regions such as the hypothalamus, hippocampus, and frontal cortex, leading to dysfunction. metabolism, neuronal damage, and recognition memory loss.


Subject(s)
Alzheimer Disease , Metabolic Syndrome , Animals , Rats , Carbohydrates , Diet , Diet, High-Fat , Metabolic Syndrome/etiology , Metabolic Syndrome/metabolism , Neurons/metabolism , Memory Disorders/metabolism
4.
Soc Neurosci ; 17(5): 462-479, 2022 10.
Article in English | MEDLINE | ID: mdl-36151909

ABSTRACT

Mirror neurons have been associated with empathy. People with psychopathic traits present low levels of empathy. To analyze this, a systematic review of fMRI studies of people with psychopathic traits during an emotional facial expression processing task was performed. The regions of interest were structures associated with the mirror neuron system: ventromedial prefrontal cortex (vmPFC), inferior parietal lobe (IPL), inferior frontal gyrus and superior temporal sulcus. The analysis was also extended to structures related to affective empathy (insula, amygdala and anterior cingulate cortex) and to two more emotional processing areas (orbitofrontal cortex and fusiform gyrus). Hypoactivation was more frequently observed in regions of the mirror neuron system from people with high psychopathic traits, as well as in the emotional processing structures, and those associated with affective empathy, except for the insula, where it presented higher activity. Differences were observed for all types of emotions. The results suggest that the mirror neuron system is altered in psychopathy and their relationship with affective empathy deficits is discussed.


Subject(s)
Mirror Neurons , Humans , Mirror Neurons/physiology , Empathy , Brain Mapping/methods , Antisocial Personality Disorder/diagnostic imaging , Facial Expression , Emotions/physiology , Magnetic Resonance Imaging/methods
5.
J Chem Neuroanat ; 125: 102166, 2022 11.
Article in English | MEDLINE | ID: mdl-36156295

ABSTRACT

Second-generation antipsychotics are the drugs of choice for the treatment of neurodevelopmental-related mental diseases such as schizophrenia. Despite the effectiveness of these drugs to ameliorate some of the symptoms of schizophrenia, specifically the positive ones, the mechanisms beyond their antipsychotic effect are still poorly understood. Second-generation antipsychotics are reported to have anti-inflammatory, antioxidant and neuroplastic properties. Using the neonatal ventral hippocampus lesion (nVHL) in the rat, an accepted schizophrenia-related model, we evaluated the effect of the second-generation antipsychotic olanzapine (OLZ) in the behavioral, neuroplastic, and neuroinflammatory alterations exhibited in the nVHL animals. OLZ corrected the hyperlocomotion and impaired working memory of the nVHL rats but failed to enhance social behavior disturbances of these animals. In the prefrontal cortex (PFC), OLZ restored the pyramidal cell structural plasticity in the nVHL rats, enhancing the dendritic arbor length, the spinogenesis and the proportion of mature spines. Moreover, OLZ attenuated astrogliosis as well as some pro-inflammatory, oxidative stress, and apoptosis-related molecules in the PFC. These findings reinforce the evidence of anti-inflammatory, antioxidant, and neurotrophic mechanisms of second-generation antipsychotics in the nVHL schizophrenia-related model, which allows for the possibility of developing more specific drugs for this disorder and thus avoiding the side effects of current schizophrenia treatments.


Subject(s)
Antipsychotic Agents , Schizophrenia , Rats , Animals , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Olanzapine/pharmacology , Olanzapine/therapeutic use , Schizophrenia/drug therapy , Antioxidants/pharmacology , Rats, Sprague-Dawley , Prefrontal Cortex , Hippocampus , Neuronal Plasticity , Disease Models, Animal
6.
Cytokine ; 153: 155868, 2022 05.
Article in English | MEDLINE | ID: mdl-35358903

ABSTRACT

The COVID-19 disease has forced us to consider the physiologic role of obesity and metabolically healthy and unhealthy status in response to SARS-CoV-2 infection. Hematological, coagulation, biochemical, and immunoinflammatory changes have been informed with a disparity in morbidity and mortality. Therefore, we aimed to investigate the influence of metabolic health on clinical features in a cross-sectional study in Mexican subjects with and without SARS-CoV-2 infection in non-severe stages after a rigorous classification of obese and non-obese subjects who were metabolically healthy and unhealthy. Four groups were formed: 1) metabolically healthy with normal BMI (MHN); 2) metabolically unhealthy with normal BMI (MUN); 3) metabolically healthy obese (MHO); 4) metabolically unhealthy obese (MUO). Serum proinflammatory (TNF-α, MCP-1, IL-1ß, and IL-6) and anti-inflammatory (TGF-ß, IL-1Ra, IL-4, and IL-10) cytokines, hematological parameters, coagulation, and acute phase components were evaluated. Our results showed that MHO people live with inflammaging. Meanwhile, MUN and MUO subjects develop metaflammation. Both inflammaging and metaflammation cause imperceptible modifications on hematological parameters, mainly in leukocyte populations and platelets, as well as acute phase and coagulation components. The statistical analysis revealed that many clinical features are dependent on metabolic health. In conclusion, MHO subjects seem to be transitioning from metabolically healthy to unhealthy, which is accelerated in acute processes, such as SARS-CoV-2 infection. Meanwhile, metabolically unhealthy subjects independently of BMI have a deteriorating immunometabolic status associated with a hyperinflammatory state leading to multi-organ dysfunction, treatment complications, and severe COVID-19 disease.


Subject(s)
COVID-19 , Metabolic Syndrome , Body Mass Index , Cross-Sectional Studies , Humans , Obesity/metabolism , Risk Factors , SARS-CoV-2
7.
J Chem Neuroanat ; 119: 102057, 2022 01.
Article in English | MEDLINE | ID: mdl-34871732

ABSTRACT

Attention deficit hyperactivity disorder (ADHAD) is a neurobehavioral disorder that affects children and adolescents with a high prevalence. Despite its prevalence and an unclear etiology, previous reports suggest that it is closely related to homocysteine metabolism. Male Sprague Dawley rats were administered with homocysteine from postnatal day (PD) 2 to PD 16. Locomotor activity was evaluated at 35 PD (prepuberal age) and 60 PD (adult age) before and after amphetamine administration. In rats evaluated at both ages, homocysteine induced hyperactivity, and the amphetamine administration reduced hyperactivity significantly at 35 PD, but not at 60 PD. In the social interaction test, homocysteine reduced the number of contacts and increased the latency to the first contact only in rats at 35 PD. Homocysteine also had an effect on short term memory at 35D and 60 PD and long-term memory at 60 PD. Morphological changes were found mainly in the shape of dendritic spines in the prefrontal cortex (PFC-3), dorsal hippocampus (CA1), dentate gyrus (DG) and nucleus accumbens (NAcc), in rats administered neonatally with homocysteine at both ages studied. In prepuberal and adult rats, there was an increase in dendritic length in DG and NAcc, respectively. The dendritic spine morphology also was altered at both ages, mainly decreasing the number of mushroom spines in NAcc and CA1 at 30 PD and in all the areas studied at 60 PD rats. Those areas are associated with the processes of attention, learning and memory that were studied, and those alterations are possibly related to changes observed in the behavioral tests. These behavioral and morphological changes in rats at 35 PD administered with homocysteine could be similar to changes found in children diagnosed with ADHD. Moreover, half to two thirds of children diagnosed with ADHD reach adulthood with this disorder. In this study we found similarities with ADHD, finding alterations in both rats at 35 PD and 60 PD. So, this may be proposed as an animal model to study this disorder present in children, adolescents and adults.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Animals , Dendritic Spines , Disease Models, Animal , Homocysteine/pharmacology , Male , Neurons , Prefrontal Cortex , Rats , Rats, Sprague-Dawley
8.
Schizophr Res ; 235: 17-28, 2021 09.
Article in English | MEDLINE | ID: mdl-34298239

ABSTRACT

Increased dopaminergic activity in the striatum underlies the neurobiology of psychotic symptoms in schizophrenia (SZ). Beyond the impaired connectivity among the limbic system, the excess of dopamine could lead to inflammation and oxidative/nitrosative stress. It has been suggested that atypical antipsychotic drugs attenuate psychosis not only due to their modulatory activity on the dopaminergic/serotonergic neurotransmission but also due to their anti-inflammatory/antioxidant effects. In such a manner, we assessed the effects of the atypical antipsychotic risperidone (RISP) on the structural neuroplasticity and biochemistry of the striatum in adult rats with neonatal ventral hippocampus lesion (NVHL), which is a developmental SZ-related model. RISP administration (0.25 mg/kg, i.p.) ameliorated the neuronal atrophy and the impairments in the morphology of the dendritic spines in the spiny projection neurons (SPNs) of the ventral striatum (nucleus accumbens: NAcc) in the NVHL rats. Also, RISP treatment normalized the pro-inflammatory pathways and induced the antioxidant activity of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) in this model. Our results point to the neurotrophic, anti-inflammatory, and antioxidant effects of RISP, together with its canonical antipsychotic mechanism, to enhance striatum function in animals with NVHL.


Subject(s)
Antipsychotic Agents , Schizophrenia , Animals , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Neuronal Plasticity , Nucleus Accumbens , Rats , Risperidone/pharmacology , Risperidone/therapeutic use , Schizophrenia/drug therapy
9.
Neurochem Res ; 46(5): 1151-1165, 2021 May.
Article in English | MEDLINE | ID: mdl-33559829

ABSTRACT

The consumption of foods rich in carbohydrates, saturated fat, and sodium, accompanied by a sedentary routine, are factors that contribute to the progress of metabolic syndrome (MS). In this way, they cause the accumulation of body fat, hypertension, dyslipidemia, and hyperglycemia. Additionally, MS has been shown to cause oxidative stress, inflammation, and death of neurons in the hippocampus. Consequently, spatial and recognition memory is affected. It has recently been proposed that metformin decavanadate (MetfDeca) exerts insulin mimetic effects that enhance metabolism in MS animals; however, what effects it can cause on the hippocampal neurons of rats with MS are unknown. The objective of the work was to evaluate the effect of MetfDeca on hippocampal neurodegeneration and recognition memory in rats with MS. Administration of MetfDeca for 60 days in MS rats improved object recognition memory (NORt). In addition, MetfDeca reduced markers of oxidative stress and hippocampal neuroinflammation. Accompanied by an increase in the density and length of the dendritic spines of the hippocampus of rats with MS. We conclude that MetfDeca represents an important therapeutic agent to treat MS and induce neuronal and cognitive restoration mechanisms.


Subject(s)
Memory/drug effects , Metabolic Syndrome/drug therapy , Metformin/therapeutic use , Neurodegenerative Diseases/drug therapy , Neuroprotective Agents/therapeutic use , Vanadates/therapeutic use , Animals , Catalase/metabolism , Drug Combinations , Hippocampus/drug effects , Inflammation/drug therapy , Inflammation/etiology , Inflammation/pathology , Male , Metabolic Syndrome/complications , Metabolic Syndrome/pathology , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/pathology , Neurons/drug effects , Neurons/pathology , Oxidative Stress/drug effects , Rats, Wistar , Superoxide Dismutase/drug effects
10.
Am J Med Genet B Neuropsychiatr Genet ; 186(3): 193-206, 2021 04.
Article in English | MEDLINE | ID: mdl-33403748

ABSTRACT

Patients with substance use disorders (SUD) are at high risk to die by suicide. So far, the neurobiology of the suicide-SUD association has not been elucidated. This study aimed to identify potential pharmacological targets among hub genes from brain gene co-expression networks of individuals with SUD in a suicidal and non-suicidal context. Post-mortem samples from the prefrontal cortex of 79 individuals were analyzed. Individuals were classified into the following groups: suicides with SUD (n = 28), suicides without SUD (n = 23), nonsuicides with SUD (n = 9), nonsuicides without SUD (n = 19). Gene expression profiles were evaluated with the Illumina HumanHT-12 v4 array. Co-expression networks were constructed in WGCNA using the differentially expressed genes found in the comparisons: (a) suicides with and without SUD and (b) nonsuicides with and without SUD. Hub genes were selected for drug-gene interaction testing in the DGIdb database. Among drugs interacting with hub genes in suicides we found MAOA inhibitors and dextromethorphan. In the nonsuicide individuals, we found interactions with eglumegad and antipsychotics (olanzapine, clozapine, loxapine). Modafinil was found to interact with genes in both suicides and nonsuicides. These drugs represent possible candidate treatments for patients with SUD with and without suicidal behavior and their study in each context is encouraged.


Subject(s)
Antipsychotic Agents/pharmacology , Brain/drug effects , Drug Repositioning/methods , Gene Regulatory Networks/drug effects , Substance-Related Disorders/drug therapy , Suicide Prevention , Adolescent , Adult , Aged , Aged, 80 and over , Brain/metabolism , Child , Female , Humans , Male , Middle Aged , Substance-Related Disorders/genetics , Substance-Related Disorders/pathology , Transcriptome , Young Adult
11.
Mol Psychiatry ; 26(9): 4784-4794, 2021 09.
Article in English | MEDLINE | ID: mdl-32555421

ABSTRACT

It is known that continuous abuse of amphetamine (AMPH) results in alterations in neuronal structure and cognitive behaviors related to the reward system. However, the impact of AMPH abuse on the hippocampus remains unknown. The aim of this study was to determine the damage caused by AMPH in the hippocampus in an addiction model. We reproduced the AMPH sensitization model proposed by Robinson et al. in 1997 and performed the novel object recognition test (NORt) to evaluate learning and memory behaviors. After the NORt, we performed Golgi-Cox staining, a stereological cell count, immunohistochemistry to determine the presence of GFAP, CASP3, and MT-III, and evaluated oxidative stress in the hippocampus. We found that AMPH treatment generates impairment in short- and long-term memories and a decrease in neuronal density in the CA1 region of the hippocampus. The morphological test showed an increase in the total dendritic length, but a decrease in the number of mature spines in the CA1 region. GFAP labeling increased in the CA1 region and MT-III increased in the CA1 and CA3 regions. Finally, we found a decrease in Zn concentration in the hippocampus after AMPH treatment. An increase in the dopaminergic tone caused by AMPH sensitization generates oxidative stress, neuronal death, and morphological changes in the hippocampus that affect cognitive behaviors like short- and long-term memories.


Subject(s)
Amphetamine , Metallothionein 3 , Amphetamine/pharmacology , Hippocampus , Learning , Neurons
12.
Synapse ; 75(6): e22193, 2021 06.
Article in English | MEDLINE | ID: mdl-33141999

ABSTRACT

In the aging process, the brain presents biochemical and morphological alterations. The neurons of the limbic system show reduced size dendrites, in addition to the loss of dendritic spines. These disturbances trigger a decrease in motor and cognitive function. Likewise, it is reported that during aging, in the brain, there is a significant decrease in neurotrophic factors, which are essential in promoting the survival and plasticity of neurons. The carboxyl-terminal fragment of the heavy chain of the tetanus toxin (Hc-TeTx) acts similarly to neurotrophic factors, inducing neuroprotection in different models of neuronal damage. The aim here, was to evaluate the effect of Hc-TeTx on the motor processes of elderly mice (18 months old), and its impact on the dendritic morphology and density of dendritic spines of neurons in the limbic system. The morphological analysis in the dendrites was evaluated employing Golgi-Cox staining. Hc-TeTx was administered (0.5 mg/kg) intraperitoneally for three days in 18-month-old mice. Locomotor activity was evaluated in a novel environment 30 days after the last administration of Hc-TeTx. Mice treated with Hc-TeTx showed significant changes in their motor behavior, and an increased dendritic spine density of pyramidal neurons in layers 3 and 5 of the prefrontal cortex in the hippocampus, and medium spiny neurons of the nucleus accumbens (NAcc). In conclusion, the Hc-TeTx improves the plasticity of the brain regions of the limbic system of aged mice. Therefore, it is proposed as a pharmacological alternative to prevent or delay brain damage during aging.


Subject(s)
Neurons , Tetanus Toxin , Animals , Dendrites/metabolism , Hippocampus/metabolism , Limbic System/metabolism , Mice , Motor Activity , Neurons/metabolism , Tetanus Toxin/metabolism , Tetanus Toxin/pharmacology , Tetanus Toxin/therapeutic use
13.
Rev. invest. clín ; 72(5): 283-292, Sep.-Oct. 2020. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1289719

ABSTRACT

Abstract Background: Gene expression alterations have been implicated in suicide pathology. However, the study of the regulatory effect of DNA methylation on gene expression in the suicidal brain has been restricted to candidate genes. Objective: The objective of the study was to identify genes whose expression levels are correlated with DNA methylation in the prefrontal cortex of suicides. Methods: Postmortem prefrontal cortex samples from 21 suicides and six non-suicides were collected. Transcriptomic and DNA methylation profiles were evaluated with microarrays; cis correlations between gene expression and CpG methylation were screened. We then analyzed the presence of transcription factor (TF) binding sites (TFBS) at CpG sites correlated with gene expression. Gene expression of TFs involved in neurodevelopmental binding to predicted TFBS was determined in the BrainSpan database. Results: We identified 22 CpG sites whose methylation levels correlated with gene expression in the prefrontal cortex of suicides. Genes annotated to identified CpG sites were involved in neurodevelopment (BBS4, NKX6-2, AXL, CTNND1, and MBP) and polyamine metabolism (polyamine oxidase [PAOX]). Such correlations were not detected in the non-suicide group. Nine TFs (USF1, TBP, SF1, NRF1, RFX1, SP3, PKNOX1, MAZ, and POU3F2) showed differential expression in pre- and post-natal developmental periods, according to BrainSpan database. Conclusions: The integration of different omic technologies provided novel candidates for the investigation of genes whose expression is altered in the suicidal brain and their potential regulatory mechanisms. (REV INVEST CLIN. 2020;72(5):283-92)

14.
J Chem Neuroanat ; 110: 101858, 2020 12.
Article in English | MEDLINE | ID: mdl-32950615

ABSTRACT

Brain aging is a widely studied process, but due to its complexity, much of its progress is unknown. There are many studies linking memory loss and reduced interneuronal communication with brain aging. However, only a few studies compare young and old animals. In the present study, in male rats aged 3, 6, and 18 months, we analyzed the locomotor activity and also short and long-term memory using the novel object recognition test (NORT), in addition to evaluating the dendritic length and the number of dendritic spines in the prefrontal cortex (PFC) and in the CA1, CA3 and DG regions of the dorsal hippocampus using Golgi-Cox staining. We also analyzed the types of dendritic spines in the aforementioned regions. 6- and 18-month old animals showed a reduction in locomotor activity, while long-term memory deficit was observed in 18-month old rats. At 18 months old, the dendritic length was reduced in all the studied regions. The dendritic spine number was also reduced in layer 5 of the PFC, and the CA1 and CA3 of the hippocampus. The dynamics of dendritic spines changed with age, with a reduction of the mushroom spines in all the studied regions, with an increase of the stubby spines in all the studied regions except from the CA3 region, that showed a reduction. Our data suggest that age causes changes in behavior, which may be the result of morphological changes at the dendrite level, both in their length and in the dynamics of their spines.


Subject(s)
Aging/physiology , Dendritic Spines/physiology , Hippocampus/physiology , Memory/physiology , Neurons/physiology , Prefrontal Cortex/physiology , Age Factors , Animals , Cell Shape/physiology , Hippocampus/cytology , Learning/physiology , Male , Neurons/cytology , Prefrontal Cortex/cytology , Rats , Rats, Sprague-Dawley
15.
Synapse ; 75(2): e22186, 2020 02.
Article in English | MEDLINE | ID: mdl-32780904

ABSTRACT

Metabolic syndrome (MS) results from excessive consumption of high-calorie foods and sedentary lifestyles. Clinically, insulin resistance, abdominal obesity, hyperglycemia, dyslipidemia, and hypertension are observed. MS has been considered a risk factor in the development of dementia. In the brain, a metabolically impaired environment generates oxidative stress and excessive production of pro-inflammatory cytokines that deteriorate the morphology and neuronal function in the hippocampus, leading to cognitive impairment. Therapeutic alternatives suggest that phenolic compounds can be part of the treatment for neuropathies and metabolic diseases. In recent years, the use of Gallic Acid (GA) has demonstrated antioxidant and anti-inflammatory effects that contribute to neuroprotection and memory improvement in animal models. However, the effect of GA on hippocampal neurodegeneration and memory impairment under MS conditions is still unclear. In this work, we administered GA (20 mg/kg) for 60 days to rats with MS. The results show that GA treatment improved zoometric and biochemical parameters, as well as the recognition memory, in animals with MS. Additionally, GA administration increased hippocampal dendritic spines and decreased oxidative stress and inflammation. Our results show that GA treatment improves metabolism: reducing the oxidative and inflammatory environment that facilitates the recovery of the neuronal morphology in the hippocampus of rats with MS. Consequently, the recognition of objects by these animals, suggesting that GA could be used therapeutically in metabolic disorders that cause dementia.


Subject(s)
Gallic Acid/pharmacology , Hippocampus/drug effects , Metabolic Syndrome/metabolism , Recognition, Psychology/drug effects , Animals , Blood Glucose/drug effects , Blood Glucose/metabolism , Catalase/drug effects , Catalase/metabolism , Dendrites/drug effects , Dendrites/pathology , Hippocampus/metabolism , Hippocampus/pathology , Inflammation/metabolism , Insulin/blood , Interleukin-1beta/drug effects , Interleukin-1beta/metabolism , Memory/drug effects , Oxidative Stress/drug effects , Rats , Reactive Oxygen Species/metabolism , Superoxide Dismutase/drug effects , Superoxide Dismutase/metabolism , Tumor Necrosis Factor-alpha/drug effects , Tumor Necrosis Factor-alpha/metabolism
16.
Rev Invest Clin ; 73(3)2020 May 07.
Article in English | MEDLINE | ID: mdl-32488228

ABSTRACT

BACKGROUND: Gene expression alterations have been implicated in suicide pathology. However, the study of the regulatory effect of DNA methylation on gene expression in the suicidal brain has been restricted to candidate genes. OBJECTIVE: The objective of the study was to identify genes whose expression levels are correlated with DNA methylation in the prefrontal cortex of suicides. METHODS: Postmortem prefrontal cortex samples from 21 suicides and six non-suicides were collected. Transcriptomic and DNA methylation profiles were evaluated with microarrays; cis correlations between gene expression and CpG methylation were screened. We then analyzed the presence of transcription factor (TF) binding sites (TFBS) at CpG sites correlated with gene expression. Gene expression of TFs involved in neurodevelopmental binding to predicted TFBS was determined in the BrainSpan database. RESULTS: We identified 22 CpG sites whose methylation levels correlated with gene expression in the prefrontal cortex of suicides. Genes annotated to identified CpG sites were involved in neurodevelopment (BBS4, NKX6-2, AXL, CTNND1, and MBP) and polyamine metabolism (polyamine oxidase [PAOX]). Such correlations were not detected in the nonsuicide group. Nine TFs (USF1, TBP, SF1, NRF1, RFX1, SP3, PKNOX1, MAZ, and POU3F2) showed differential expression in pre- and post-natal developmental periods, according to BrainSpan database. CONCLUSIONS: The integration of different omic technologies provided novel candidates for the investigation of genes whose expression is altered in the suicidal brain and their potential regulatory mechanisms.

17.
J Nutr Biochem ; 83: 108416, 2020 09.
Article in English | MEDLINE | ID: mdl-32554223

ABSTRACT

The main characteristic of brain aging is an exacerbated inflammatory and oxidative response that affects dendritic morphology and the function of the neurons of the prefrontal cortex (PFC) and the hippocampus. This consequently causes memory loss. Recently, the use of the Goji berry (Lycium barbarum) as an antioxidant extract has provided neuroprotection and neuroplasticity, however, its therapeutic potential has not been demonstrated in aging conditions. The objective of this study was to evaluate the effect of Goji administration on memory recognition, as well as the changes in the dendritic morphology of the PFC and Hippocampus pyramidal neurons in old rats. Goji (3 g/kg) was administrated for 60 days in 18-month-old rats. After the treatment, recognition memory was evaluated using the new object recognition task (NORt). The changes in the neuron morphology of the PFC and hippocampus pyramidal neurons in old rats were evaluated by Golgi-cox stain and immunoreactivity for synaptophysin, glial fibrillary acidic protein (GFAP), caspase-3, 3-nitrotyrosine (3-NT) and nuclear factor erythroid 2-related factor 2 (Nrf2). The rats treated with Goji showed a significant increase in dendritic morphology in the PFC and hippocampus neurons, a greater immunoreactivity to synaptophysin and a decrease in reactive astrogliosis and also in caspase-3, in 3-NT and in Nrf2 in these brain regions was also observed. Goji administration promotes the plasticity processes in the PFC and in the hippocampus of old rats, critical structures in the brain aging process.


Subject(s)
Aging/drug effects , Hippocampus/drug effects , Lycium/chemistry , Neuronal Plasticity/drug effects , Plant Extracts/administration & dosage , Prefrontal Cortex/drug effects , Aging/genetics , Aging/metabolism , Animals , Antioxidants/administration & dosage , Brain/drug effects , Brain/metabolism , Brain/physiopathology , Caspase 3/genetics , Caspase 3/metabolism , Hippocampus/metabolism , Hippocampus/physiopathology , Humans , Male , NF-E2 Transcription Factor/genetics , NF-E2 Transcription Factor/metabolism , Neurons/drug effects , Neurons/metabolism , Prefrontal Cortex/metabolism , Prefrontal Cortex/physiopathology , Rats , Rats, Sprague-Dawley
18.
Synapse ; 74(9): e22153, 2020 09.
Article in English | MEDLINE | ID: mdl-32190918

ABSTRACT

Metabolic syndrome (MS) is a health problem that is characterized by body fat accumulation, hypertension, dyslipidemia, and hyperglycemia; recently, it has been demonstrated that MS also damages memory processes. The first-line drug in the treatment of MS and type 2 diabetes mellitus is metformin, which is an antihyperglycemic agent. This drug has been shown to produce neuroprotection and to improve memory processes. However, the mechanism involved in this neuroprotection is unknown. A 90-day administration of metformin improved the cognitive processes of rats with MS as evaluated by the novel object recognition test, and this finding could be explained by an increase in the neuronal spine density and spine length. We also found that metformin increased the immunoreactivity of synaptophysin, sirtuin-1, AMP-activated protein kinase, and brain-derived neuronal factor, which are important plasticity markers. We conclude that metformin is an important therapeutic agent that increases neural plasticity and protects cognitive processes. The use of this drug is important in the minimization of the damage caused by MS.


Subject(s)
Hippocampus/drug effects , Hypoglycemic Agents/pharmacology , Metabolic Syndrome/physiopathology , Metformin/pharmacology , Neuronal Plasticity , Neuroprotective Agents/pharmacology , Recognition, Psychology , AMP-Activated Protein Kinase Kinases , Animals , Brain-Derived Neurotrophic Factor/metabolism , Hippocampus/metabolism , Hippocampus/physiology , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/therapeutic use , Male , Metabolic Syndrome/drug therapy , Metabolic Syndrome/metabolism , Metformin/administration & dosage , Metformin/therapeutic use , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/therapeutic use , Protein Kinases/metabolism , Rats , Rats, Wistar , Sirtuin 1/metabolism , Synaptophysin/metabolism
19.
J Affect Disord ; 267: 67-77, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32063575

ABSTRACT

BACKGROUND: Suicide rates vary substantially by sex. Suicides committed by males significantly outnumber female suicides. Disparities in community and social factors provide a partial explanation for this phenomenon. Thus, the evaluation of sex differences at a biological level might contribute to the elucidation of the factors involved in this imbalance. The aim of the present study was to evaluate sex-specific gene expression patterns in the suicidal brain. METHODS: postmortem samples from the dorsolateral prefrontal cortex (DLPFC) of 75 Latino individuals were analyzed. We considered the following groups: i) male suicides (n = 38), ii) female suicides (n = 10), iii) male controls (n = 20), and iv) female controls (n = 7). Gene expression profiles were evaluated by microarrays. Differentially expressed genes among the groups were identified with a linear model. Similarities and differences in the gene sets between the sexes were identified. RESULTS: Differentially expressed genes were identified between suicides and controls of each sex: 1,729 genes in females and 1,997 genes in males. Female-exclusive suicide genes were related to cell proliferation and immune response. Meanwhile, male-exclusive suicide genes were associated to DNA binding and ribonucleic protein complex. Sex-independent suicide genes showed enrichment in mitochondrial and vesicular functions. LIMITATIONS: Relatively small sample size. Our diagnosis approach was limited to information found on coroner's records. The analysis was limited to a single brain area (DLPFC) and we used microarrays. CONCLUSION: Previously unexplored sex differences in the brain gene expression of suicide completers were identified, providing valuable foundation for the evaluation of sex-specific factors in suicide.


Subject(s)
Brain , Sex Characteristics , Female , Gene Expression Profiling , Humans , Male , Prefrontal Cortex , Transcriptome
20.
J Psychiatr Res ; 123: 62-71, 2020 04.
Article in English | MEDLINE | ID: mdl-32036075

ABSTRACT

Suicidal behavior is result of the interaction of several contributors, including genetic and environmental factors. The integration of approaches considering the polygenic component of suicidal behavior, such as polygenic risk scores (PRS) and DNA methylation is promising for improving our understanding of the complex interplay between genetic and environmental factors in this behavior. The aim of this study was the evaluation of DNA methylation differences between individuals with high and low genetic burden for suicidality. The present study was divided into two phases. In the first phase, genotyping with the Psycharray chip was performed in a discovery sample of 568 Mexican individuals, of which 149 had suicidal behavior (64 individuals with suicidal ideation, 50 with suicide attempt and 35 with completed suicide). Then, a PRS analysis based on summary statistics from the Psychiatric Genomic Consortium was performed in the discovery sample. In a second phase, we evaluated DNA methylation differences between individuals with high and low genetic burden for suicidality in a sub-sample of the discovery sample (target sample) of 94 subjects. We identified 153 differentially methylated sites between individuals with low and high-PRS. Among genes mapped to differentially methylated sites, we found genes involved in neurodevelopment (CHD7, RFX4, KCNA1, PLCB1, PITX1, NUMBL) and ATP binding (KIF7, NUBP2, KIF6, ATP8B1, ATP11A, CLCN7, MYLK, MAP2K5). Our results suggest that genetic variants might increase the predisposition to epigenetic variations in genes involved in neurodevelopment. This study highlights the possible implication of polygenic burden in the alteration of epigenetic changes in suicidal behavior.


Subject(s)
DNA Methylation , Multifactorial Inheritance , Suicidal Ideation , Suicide, Attempted , Epigenesis, Genetic , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...