Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Insects ; 10(12)2019 Nov 23.
Article in English | MEDLINE | ID: mdl-31771137

ABSTRACT

Conservative techniques, such as ground cover management, could help promote viticulture sustainability, which is a goal of conservation biological control, by providing shelter and food sources for predatory insects. A field experiment was conducted in a Mediterranean vineyard to evaluate ground cover management impacts on predatory insect and potential grapevine pest abundance and diversity, both on the ground and in the grapevine canopy. Three different ground cover management techniques (tillage, spontaneous cover and flower-driven cover) were tested for two years (2016 and 2017). Overall, the ground cover management significantly affected the abundance of important epigeal predators, of which carabids, forficulids and staphylinids were the most captured. The carabid abundances under both the cover crop treatments were found to be approximately three times higher compared with that under the tillage treatment. In contrast, the canopy insect abundance in the vineyard was similar among the treatments for both the predators and the potential grapevine pest species. These results indicate that cover crop vegetation can be used in vineyards to enhance predatory insect abundance and may improve agroecosystem resilience.

2.
J Econ Entomol ; 111(4): 1904-1914, 2018 08 03.
Article in English | MEDLINE | ID: mdl-29788072

ABSTRACT

Complete development of Orius majusculus Reuter (Heteroptera: Anthocoridae) at nine constant temperatures, between 12 and 34°C, was evaluated under laboratory conditions. The maximum developmental period of 90.75 d occurred at 12°C, whereas the minimum of 11.34 d occurred at 30°C. From 30 to 34°C, the developmental period increased to 13.50 d. Between 21 and 33°C the survival rate was more than 80%. The optimal temperature when considering developmental rate and survival was between 24 and 30°C. At constant temperatures, four models were developed, one of which was linear and three nonlinear (Logan type III, Lactin, and Brière). All models were validated under field conditions and diel temperature variations. The values of the adjusted determination coefficients of the linear (>0.77) and nonlinear models (>0.93) were high. The thermal requirement for complete development, from egg to adult, was 284.5 degree-days (DD). In all nonlinear models, elevated levels of accuracy (≥90.31%) in field validation were also obtained, especially in the Brière model. With the results obtained herein, the optimization of O. majusculus mass rearing, its ideal use, and field management in biological control strategies can be improved.


Subject(s)
Heteroptera , Animals , Models, Biological , Nonlinear Dynamics , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...