Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Catal ; 12(16): 10482-10498, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36033370

ABSTRACT

The ethanol surface reaction over CeO2 nanooctahedra (NO) and nanocubes (NC), which mainly expose (111) and (100) surfaces, respectively, was studied by means of infrared spectroscopy (TPSR-IR), mass spectrometry (TPSR-MS), and density functional theory (DFT) calculations. TPSR-MS results show that the production of H2 is 2.4 times higher on CeO2-NC than on CeO2-NO, which is rationalized starting from the different types of adsorbed ethoxy species controlled by the shape of the ceria particles. Over the CeO2(111) surface, monodentate type I and II ethoxy species with the alkyl chain perpendicular or parallel to the surface, respectively, were identified. Meanwhile, on the CeO2(100) surface, bidentate and monodentate type III ethoxy species on the checkerboard O-terminated surface and on a pyramid of the reconstructed (100) surface, respectively, are found. The more labile surface ethoxy species on each ceria nanoshape, which are the monodentate type I or III ethoxy on CeO2-NO and CeO2-NC, respectively, react on the surface to give acetate species that decompose to CO2 and CH4, while H2 is formed via the recombination of hydroxyl species. In addition, the more stable monodentate type II and bidentate ethoxy species on CeO2-NO and CeO2-NC, respectively, give an ethylenedioxy intermediate, the binding of which is facet-dependent. On the (111) facet, the less strongly bound ethylenedioxy desorbs as ethylene, whereas on the (100) facet, the more strongly bound intermediate also produces CO2 and H2 via formate species. Thus, on the (100) facet, an additional pathway toward H2 formation is found. ESR activity measurements show an enhanced H2 production on the nanocubes.

2.
ACS Catal ; 9(4): 2842-2853, 2019 Apr 05.
Article in English | MEDLINE | ID: mdl-32477699

ABSTRACT

Supported catalytically active liquid metal solutions (SCALMS) represent a class of catalytic materials that have only recently been developed, but have already proven to be highly active, e.g., for dehydrogenation reactions. Previous studies attributed the catalytic activity to isolated noble metal atoms at the surface of a liquid and inert Ga matrix. In this study, we apply diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) with CO as a probe molecule to Ga/Al2O3, Pt/Al2O3, and Ga37Pt/Al2O3 catalysts, to investigate in detail the nature of the active Pt species. Comparison of CO adsorption on Pt/Al2O3 and Ga37Pt/Al2O3 shows that isolated Pt atoms are, indeed, present at the surface of the liquid SCALMS. Combining DRIFTS with online gas chromatography (GC), we investigated the Ga/Al2O3, Pt/Al2O3, and Ga37Pt/Al2O3 systems under operando conditions during propane dehydrogenation in CO/propane and in Ar/propane. We find that the Pt/Al2O3 sample is rapidly poisoned by CO adsorption and coke, whereas propane dehydrogenation over Ga37Pt/Al2O3 SCALMS leads to higher conversion with no indication of poisoning effects. We show under operando conditions that isolated Pt atoms are present at the surface of SCALMS during the dehydrogenation reaction. IR spectra and density-functional theory (DFT) suggest that both the Ga matrix and the presence of coadsorbates alter the electronic properties of the surface Pt species.

3.
Chemphyschem ; 18(23): 3443-3453, 2017 Dec 06.
Article in English | MEDLINE | ID: mdl-28898518

ABSTRACT

Hybrid materials consisting of ionic liquid (ILs) films on supported oxides hold a great potential for applications in electronic and energy materials. In this work, we have performed surface science model studies scrutinizing the interaction of ester-functionalized ILs with atomically defined Co3 O4 (111) and CoO(100) surfaces. Both supports are prepared under ultra-high vacuum (UHV) conditions in form of thin films on Ir(100) single crystals. Subsequently, thin films of three ILs, 3-butyl-1-methyl imidazolium bis(trifluoromethyl-sulfonyl) imide ([BMIM][NTf2 ]), 3-(4-methoxyl-4-oxobutyl)-1-methylimidazolium bis(trifluoromethyl-sulfonyl) imide ([MBMIM][NTf2 ]), and 3-(4-isopropoxy-4-oxobutyl)-1-methylimidazolium bis(trifluoromethyl-sulfonyl) imide ([IPBMIM][NTf2 ]), were deposited on these surfaces by physical vapor deposition (PVD). Time-resolved and temperature-programmed infrared reflection absorption spectroscopy (TR-IRAS, TP-IRAS) were applied to monitor in situ the adsorption, film growth, and thermally induced desorption. By TP-IRAS, we determined the multilayer desorption temperature of [BMIM][NTf2 ] (360±5 K), [MBMIM][NTf2 ] (380 K) and [IPBMIM][NTf2 ] (380 K). Upon deposition below the multilayer desorption temperature, all three ILs physisorb on both cobalt oxide surfaces. However, strong orientation effects are observed in the first monolayer, where the [NTf2 ]- ion interacts with the surface through the SO2 groups and the CF3 groups point towards the vacuum. For the two functionalized ILs, the [MBMIM]+ and [IPBMIM]+ interact with the surface Co2+ ions of both surfaces via the CO group of their ester function. A very different behavior is found, if the ILs are deposited above the multilayer desorption temperature (400 K). While for [BMIM][NTf2 ] and [MBMIM][NTf2 ] a molecularly adsorbed monolayer film is formed, [IPBMIM][NTf2 ] undergoes a chemical transformation on the CoO(100) surface. Here, the ester group is cleaved and the cation is chemically linked to the surface by formation of a surface carboxylate. The IL-derived species in the monolayer desorb at temperatures around 500 to 550 K.

4.
Angew Chem Int Ed Engl ; 56(31): 9072-9076, 2017 07 24.
Article in English | MEDLINE | ID: mdl-28600894

ABSTRACT

Ionic liquids (IL) hold a great potential as novel electrolytes for applications in electronic materials and energy technology. The functionality of ILs in these applications relies on their interface to semiconducting nanomaterials. Therefore, methods to control the chemistry and structure of this interface are the key to assemble new IL-based electronic and electrochemical materials. Here, we present a new method to prepare a chemically well-defined interface between an oxide and an IL film. An imidazolium-based IL, which is carrying an ester group, is deposited onto cobalt oxide surface by evaporation. The IL binds covalently to the surface by thermally activated cleavage of the ester group and formation of a bridging carboxylate. The anchoring reaction shows high structure sensitivity, which implies that the IL film can be adhered selectively to specific oxide surfaces.

SELECTION OF CITATIONS
SEARCH DETAIL
...