Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Publication year range
1.
Actual. SIDA. infectol ; 30(110): 10-19, 20220000.
Article in Spanish | LILACS, BINACIS | ID: biblio-1414132

ABSTRACT

Desde principios de la pandemia de SARS-CoV-2 se ha debatido el curso de la enfermedad COVID-19 en personas con VIH. Por un lado, la inmunodeficiencia derivada de la infección por VIH y la mayor prevalencia de comorbilidades estarían asociadas al desarrollo de enfermedad grave. Por otro lado, la disfunción inmunológica podría evitar una respuesta inflamatoria exacerbada. En este trabajo de revisión analizamos la evidencia disponible en cuanto a la relación entre la manifestación clínica de COVID-19 y la respuesta inmune humoral y celular contra SARS-CoV-2 en el contexto de la coinfección con VIH. La bibliografía sugiere que las personas con VIH que reciben tratamiento antirretroviral logran respuestas eficaces contra SARS-CoV-2, a pesar de presentar algunas de las funciones celulares alteradas. Esto sugiere un impacto significativo de la terapia antirretroviral, no solo en el control del VIH sino en potenciar la inmunidad para restringir otras infecciones.


Since the beginning of SARS-CoV-2 pandemic, the course of COVID-19 in people with HIV has been debated. On the one hand, the immunodeficiency derived from HIV infec-tion and the higher prevalence of comorbidities would be associated with severe disease. On the other hand, due to its immunological dysfunction, an exacerbated inflam-matory response might be avoided.In this review, we analyzed the evidence regarding the clinical manifestation of COVID-19 and the humoral and cellular immune response against SARS-CoV-2 during HIV coinfection. The literature suggests that people with HIV on antiretroviral treatment achieved effective responses against SARS-CoV-2, despite having altered cell func-tions. This indicates a remarkable impact of antiretroviral therapy, not only in controlling HIV but also in boosting immunity to restrict other infections


Subject(s)
Humans , Male , Female , HIV Infections/immunology , Antiretroviral Therapy, Highly Active , Immunity, Humoral/immunology , SARS-CoV-2/immunology , COVID-19/immunology
3.
Tuberculosis (Edinb) ; 127: 102045, 2021 03.
Article in English | MEDLINE | ID: mdl-33434785

ABSTRACT

HIV infection is a major risk factor predisposing for Mycobacterium tuberculosis infection and progression to active tuberculosis (TB). As host immune response defines the course of infection, we aimed to identify immuno-endocrine changes over six-months of anti-TB chemotherapy in HIV+ people. Plasma levels of cortisol, DHEA and DHEA-S, percentages of CD4+ regulatory T cell subsets and number of IFN-γ-secreting cells were determined. Several cytokines, chemokines and C-reactive protein levels were measured. Results were correlated with clinical parameters as predictors of infection resolution and compared to similar data from HIV+ individuals, HIV-infected persons with latent TB infection and healthy donors. Throughout the course of anti-TB/HIV treatment, DHEA and DHEA-S plasma levels raised while cortisol diminished, which correlated to predictive factors of infection resolution. Furthermore, the balance between cortisol and DHEA, together with clinical assessment, may be considered as an indicator of clinical outcome after anti-TB treatment in HIV+ individuals. Clinical improvement was associated with reduced frequency of unconventional Tregs, increment in IFN-γ-secreting cells, diminution of systemic inflammation and changes of circulating cytokines and chemokines. This study suggests that the combined anti-HIV/TB therapies result in partial restoration of both, immune function and adrenal hormone plasma levels.


Subject(s)
Adrenal Cortex Hormones/blood , Antitubercular Agents/therapeutic use , HIV Infections/blood , HIV-1/pathogenicity , Mycobacterium tuberculosis/drug effects , Tuberculosis/drug therapy , Adult , Biomarkers/blood , Coinfection , Cytokines/blood , Dehydroepiandrosterone/blood , Dehydroepiandrosterone Sulfate/blood , Female , HIV Infections/immunology , HIV Infections/virology , HIV-1/immunology , Host-Pathogen Interactions , Humans , Hydrocortisone/blood , Male , Middle Aged , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/pathogenicity , Prospective Studies , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/microbiology , T-Lymphocytes, Regulatory/virology , Time Factors , Treatment Outcome , Tuberculosis/blood , Tuberculosis/immunology , Tuberculosis/microbiology
4.
J Biomed Sci ; 27(1): 20, 2020 Jan 06.
Article in English | MEDLINE | ID: mdl-31906962

ABSTRACT

BACKGROUND: Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis (TB), affecting approximately one third of the world's population. Development of an adequate immune response will determine disease progression or progress to chronic infection. Risk of developing TB among human immunodeficiency virus (HIV)-coinfected patients (HIV-TB) is 20-30 times higher than those without HIV infection, and a synergistic interplay between these two pathogens accelerates the decline in immunological functions. TB treatment in HIV-TB coinfected persons is challenging and it has a prolonged duration, mainly due to the immune system failure to provide an adequate support for the therapy. Therefore, we aimed to study the role of the hormone 7-oxo-dehydroepiandrosterone (7-OD) as a modulator of anti-tuberculosis immune responses in the context of HIV-TB coinfection. METHODS: A cross-sectional study was conducted among HIV-TB patients and healthy donors (HD). We characterized the ex vivo phenotype of CD4 + T cells and also evaluated in vitro antigen-specific responses by Mtb stimulation of peripheral blood mononuclear cells (PBMCs) in the presence or absence of 7-OD. We assessed lymphoproliferative activity, cytokine production and master transcription factor profiles. RESULTS: Our results show that HIV-TB patients were not able to generate successful anti-tubercular responses in vitro compared to HD, as reduced IFN-γ/IL-10 and IFN-γ/IL-17A ratios were observed. Interestingly, treatment with 7-OD enhanced Th1 responses by increasing Mtb-induced proliferation and the production of IFN-γ and TNF-α over IL-10 levels. Additionally, in vitro Mtb stimulation augmented the frequency of cells with a regulatory phenotype, while 7-OD reduced the proportion of these subsets and induced an increase in CD4 + T-bet+ (Th1) subpopulation, which is associated with clinical data linked to an improved disease outcome. CONCLUSIONS: We conclude that 7-OD modifies the cytokine balance and the phenotype of CD4 + T cells towards a more favorable profile for mycobacteria control. These results provide new data to delineate novel treatment approaches as co-adjuvant for the treatment of TB.


Subject(s)
Coinfection/immunology , Dehydroepiandrosterone/analogs & derivatives , HIV Infections/immunology , HIV-1/immunology , Mycobacterium tuberculosis/immunology , Th1 Cells/immunology , Tuberculosis, Pulmonary/immunology , Adult , Chronic Disease , Coinfection/pathology , Cross-Sectional Studies , Dehydroepiandrosterone/immunology , Dehydroepiandrosterone/pharmacology , Female , HIV Infections/pathology , Humans , Male , Middle Aged , Th1 Cells/pathology , Tuberculosis, Pulmonary/pathology
5.
Sci Rep ; 9(1): 187, 2019 01 17.
Article in English | MEDLINE | ID: mdl-30655556

ABSTRACT

CD8+T cells contribute to tuberculosis (TB) infection control by inducing death of infected macrophages. Mycobacterium tuberculosis (Mtb) infection is associated with increased PD-1/PD-L1 expression and alternative activation of macrophages. We aimed to study the role of PD-1 pathway and macrophage polarization on Mtb-specific CD8+T cell-induced macrophage death. We observed that both PD-L1 on CD14+ cells and PD-1 on CD8+T cells were highly expressed at the site of infection in pleurisy TB patients' effusion samples (PEMC). Moreover, a significant increase in CD8+T cells' Mtb-specific degranulation from TB-PEMC vs. TB-PBMC was observed, which correlated with PD-1 and PDL-1 expression. In an in vitro model, M1 macrophages were more susceptible to Mtb-specific CD8+T cells' cytotoxicity compared to M2a macrophages and involved the transfer of cytolytic effector molecules from CD8+T lymphocytes to target cells. Additionally, PD-L1 blocking significantly increased the in vitro Ag-specific CD8+T cell cytotoxicity against IFN-γ-activated macrophages but had no effect over cytotoxicity on IL-4 or IL-10-activated macrophages. Interestingly, PD-L1 blocking enhanced Mtb-specific CD8+ T cell killing of CD14+ cells from human tuberculous pleural effusion samples. Our data indicate that PD-1/PD-L1 pathway modulates antigen-specific cytotoxicity against M1 targets in-vitro and encourage the exploration of checkpoint blockade as new adjuvant for TB therapies.


Subject(s)
B7-H1 Antigen/metabolism , CD8-Positive T-Lymphocytes/immunology , Cell Death , Macrophages/microbiology , Mycobacterium tuberculosis/immunology , Programmed Cell Death 1 Receptor/metabolism , Blood Specimen Collection , CD8-Positive T-Lymphocytes/microbiology , Humans , Macrophages/pathology , Pleural Effusion/microbiology , T-Lymphocytes, Cytotoxic/immunology , Tuberculosis/immunology , Tuberculosis/prevention & control
6.
Sci Rep ; 8(1): 6692, 2018 04 27.
Article in English | MEDLINE | ID: mdl-29703963

ABSTRACT

An estimated one third of the world's population is affected by latent tuberculosis (TB), which once active represents a leading cause of death among infectious diseases. Human immunodeficiency virus (HIV) infection is a main predisposing factor to TB reactivation. Individuals HIV-TB co-infected develop a chronic state of inflammation associated with hypothalamic-pituitary-adrenal (HPA) axis dysregulation. This results in a hormonal imbalance, disturbing the physiological levels of cortisol and dehydroepiandrosterone (DHEA). DHEA and its oxygenated metabolites androstenediol (AED), androstenetriol (AET) and 7-oxo-DHEA are immunomodulatory compounds that may regulate physiopathology in HIV-TB co-infection. In order to study possible changes in plasma levels of these hormones, we developed an approach based on high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). To our knowledge, this represents the first report of their simultaneous measurement in HIV-TB individuals and the comparison with healthy donors, obtaining statistically higher plasma levels of DHEA, AET and 7-oxo-DHEA in patients. Moreover, we found that concentrations of 7-oxo-DHEA positively correlated with absolute CD4+ T cell counts, nadir CD4+ T cell values and with individuals who presented TB restricted to the lungs. This research contributes to understanding the role of these hormones in HIV-TB and emphasizes the importance of deepening their study in this context.


Subject(s)
Coinfection/complications , Coinfection/pathology , Dehydroepiandrosterone/blood , Endocrine System Diseases/pathology , HIV Infections/pathology , Tuberculosis/pathology , CD4 Lymphocyte Count , Chromatography, High Pressure Liquid , Dehydroepiandrosterone/analogs & derivatives , HIV Infections/complications , Humans , Immunologic Factors/blood , Plasma/chemistry , Tandem Mass Spectrometry , Tuberculosis/complications
7.
Shock ; 48(1): 94-103, 2017 07.
Article in English | MEDLINE | ID: mdl-27922552

ABSTRACT

All-trans-retinoic acid (ATRA) is a derivative of vitamin A with antiproliferative properties. Endotoxin shock and subsequent immunosuppression (IS) by lipopolysaccharide (LPS) stimulates myelopoiesis with expansion of myeloid-derived suppressor cells (MDSC). Since we have previously shown that ATRA reverses the IS state by decreasing functional MDSC, our aim was to investigate if ATRA was able to modulate MDSC generation by regulating myelopoiesis in murine hematopoietic organs. We found that ATRA administration in vivo and in vitro decreased the number of CD34+ precursor cells that were increased in IS mice. When we studied the cellular mechanisms involved, we did not find any differences in apoptosis of CD34+ precursors or in the differentiation of these cells to their mature counterparts. Surprisingly, ATRA decreased precursor proliferation, in vitro and in vivo, as assessed by a reduction in the size and number of colony forming units generated from CD34+ cells and by a decreased incorporation of H-thymidine. Moreover, ATRA administration to IS mice decreased the number of MDSC in the spleen, with a restoration of T lymphocyte proliferation and a restitution of the histological architecture. Our results indicate, for the first time, a new use of ATRA to abolish LPS-induced myelopoiesis, affecting the proliferation of precursor cells, and in consequence, decreasing MDSC generation, having a direct impact on the improvement of immune competence. Administration of ATRA could overcome the immunosuppressive state generated by sepsis that often leads to opportunistic life-threatening infections. Therefore, ATRA could be considered a complementary treatment to enhance immune responses.


Subject(s)
Antigens, CD34/metabolism , Lipopolysaccharides/toxicity , Myeloid-Derived Suppressor Cells/drug effects , Tretinoin/therapeutic use , Animals , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Flow Cytometry , Male , Mice , Mice, Inbred BALB C , Reactive Oxygen Species/metabolism
8.
Viruses ; 8(5)2016 05 23.
Article in English | MEDLINE | ID: mdl-27223301

ABSTRACT

MVA is an attenuated vector that still retains immunomodulatory genes. We have previously reported its optimization after deleting the C12L gene, coding for the IL-18 binding-protein. Here, we analyzed the immunogenicity of MVA vectors harboring the simultaneous deletion of A44L, related to steroid synthesis and A46R, a TLR-signaling inhibitor (MVAΔA44L-A46R); or also including a deletion of C12L (MVAΔC12L/ΔA44L-A46R). The absence of biological activities of the deleted genes in the MVA vectors was demonstrated. Adaptive T-cell responses against VACV epitopes, evaluated in spleen and draining lymph-nodes of C57Bl/6 mice at acute/memory phases, were of higher magnitude in those animals that received deleted MVAs compared to MVAwt. MVAΔC12L/ΔA44L-A46R generated cellular specific memory responses of higher quality characterized by bifunctionality (CD107a/b⁺/IFN-γ⁺) and proliferation capacity. Deletion of selected genes from MVA generated innate immune responses with higher levels of determining cytokines related to T-cell response generation, such as IL-12, IFN-γ, as well as IL-1ß and IFN-ß. This study describes for the first time that simultaneous deletion of the A44L, A46R and C12L genes from MVA improved its immunogenicity by enhancing the host adaptive and innate immune responses, suggesting that this approach comprises an appropriate strategy to increase the MVA vaccine potential.


Subject(s)
Immunity, Innate , Sequence Deletion , T-Lymphocytes/immunology , Vaccinia virus/genetics , Vaccinia virus/immunology , Viral Proteins/genetics , Animals , Antigens, Viral/immunology , Cytokines/metabolism , Epitopes/immunology , Lymph Nodes/immunology , Mice, Inbred C57BL , Spleen/immunology
9.
Biomed Res Int ; 2015: 461093, 2015.
Article in English | MEDLINE | ID: mdl-26075241

ABSTRACT

Worldwide, around 14 million individuals are coinfected with both tuberculosis (TB) and human immunodeficiency virus (HIV). In coinfected individuals, both pathogens weaken immunological system synergistically through mechanisms that are not fully understood. During both HIV and TB infections, there is a chronic state of inflammation associated to dramatic changes in immune cytokine and endocrine hormone levels. Despite this, the relevance of immunoendocrine interaction on both the orchestration of an effective immune response against both pathogens and the control of the chronic inflammation induced during HIV, TB, or both infections is still controversial. The present study reviews immunoendocrine interactions occurring during HIV and TB infections. We also expose our own findings on immunoendocrine cross talk in HIV-TB coinfection. Finally, we evaluate the use of adrenal hormones and their derivatives in immune-therapy and discuss the use of some of these compounds like the adjuvant for the prevention and treatment of TB in HIV patients.


Subject(s)
Adjuvants, Immunologic/therapeutic use , Coinfection , Cytokines/immunology , Endocrine System/immunology , HIV Infections , HIV-1/immunology , Hormones/immunology , Tuberculosis , Coinfection/immunology , Coinfection/therapy , HIV Infections/immunology , HIV Infections/therapy , Humans , Tuberculosis/immunology , Tuberculosis/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...