Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Commun ; 8: 15192, 2017 05 08.
Article in English | MEDLINE | ID: mdl-28480893

ABSTRACT

The verification of a successful covalent functionalization of graphene and related carbon allotropes can easily be carried out by Raman spectroscopy. Nevertheless, the unequivocal assignment and resolution of individual lattice modes associated with the covalent binding of addends was elusive up to now. Here we present an in situ Raman study of a controlled functionalization of potassium intercalated graphite, revealing several new bands appearing in the D-region of the spectrum. The evolution of these bands with increasing degree of functionalization from low to moderate levels provides a basis for the deconvolution of the different components towards quantifying the extent of functionalization. By complementary DFT calculations we were able to identify the vibrational changes in the close proximity of the addend bearing lattice carbon atoms and to assign them to specific Raman modes. The experimental in situ observation of the developing functionalization along with the reoxidation of the intercalated graphite represents an important step towards an improved understanding of the chemistry of graphene.

3.
Sci Rep ; 7: 45165, 2017 03 27.
Article in English | MEDLINE | ID: mdl-28345640

ABSTRACT

Covalent functionalisation of graphene is a continuously progressing field of research. The optical properties of such derivatives attract particular attention. In virtually all optical responses, however, an enhancement in peak intensity with increase of sp3 carbon content, and a vanishing of the peak position shift in monolayer compared to few-layer systems, is observed. The understanding of these seemingly connected phenomena is lacking. Here we demonstrate, using Raman spectroscopy and in situ electrostatic doping techniques, that the intensity is directly modulated by an additional contribution from photoluminescent π-conjugated domains surrounded by sp3 carbon regions in graphene monolayers. The findings are further underpinned by a model which correlates the individual Raman mode intensities to the degree of functionalisation. We also show that the position shift in the spectra of solvent-based and powdered functionalised graphene derivatives originates predominantly from the presence of edge-to-edge and edge-to-basal plane interactions and is by large functionalisation independent.

4.
Nat Commun ; 7: 12411, 2016 08 10.
Article in English | MEDLINE | ID: mdl-27506380

ABSTRACT

Herein, we report on a significant discovery, namely, the quantitative discharging of reduced graphite forms, such as graphite intercalation compounds, graphenide dispersions and graphenides deposited on surfaces with the simple solvent benzonitrile. Because of its comparatively low reduction potential, benzonitrile is reduced during this process to the radical anion, which exhibits a red colour and serves as a reporter molecule for the quantitative determination of negative charges on the carbon sheets. Moreover, this discovery reveals a very fundamental physical-chemical phenomenon, namely a quantitative solvent reduction induced and electrostatically driven mass transport of K(+) ions from the graphite intercalation compounds into the liquid. The simple treatment of dispersed graphenides suspended on silica substrates with benzonitrile leads to the clean conversion to graphene. This unprecedented procedure represents a rather mild, scalable and inexpensive method for graphene production surpassing previous wet-chemical approaches.

5.
ACS Nano ; 9(6): 6018-30, 2015 Jun 23.
Article in English | MEDLINE | ID: mdl-25969861

ABSTRACT

Although transition metal dichalcogenides such as MoS2 have been recognized as highly potent two-dimensional nanomaterials, general methods to chemically functionalize them are scarce. Herein, we demonstrate a functionalization route that results in organic groups bonded to the MoS2 surface via covalent C-S bonds. This is based on lithium intercalation, chemical exfoliation and subsequent quenching of the negative charges residing on the MoS2 by electrophiles such as diazonium salts. Typical degrees of functionalization are 10-20 atom % and are potentially tunable by the choice of intercalation conditions. Significantly, no further defects are introduced, and annealing at 350 °C restores the pristine 2H-MoS2. We show that, unlike both chemically exfoliated and pristine MoS2, the functionalized MoS2 is very well dispersible in anisole, confirming a significant modification of the surface properties by functionalization. DFT calculations show that the grafting of the functional group to the sulfur atoms of (charged) MoS2 is energetically favorable and that S-C bonds are formed.

6.
ACS Nano ; 7(6): 5472-82, 2013 Jun 25.
Article in English | MEDLINE | ID: mdl-23668365

ABSTRACT

We report on the introduction of a systematic method for the quantitative and reliable characterization of covalently functionalized graphene based on Scanning-Raman-Microscopy (SRM). This allows for recording and analyzing several thousands of Raman spectra per sample and straightforward display of various Raman properties and their correlations with each other in histograms or coded 2D-plots. In this way, information about the functionalization efficiency of a given reaction, the reproducibility of the statistical analysis, and the sample homogeneity can be easily deduced. Based on geometric considerations, we were also able to provide, for the first time, a correlation between the mean defect distance of densely packed point defects and the Raman ID/IG ratio directly obtained from the statistical analysis. This proved to be the prerequisite for determining the degree of functionalization, termed θ. As model compounds, we have studied a series of arylated graphenes (GPh) for which we have developed new synthetic procedures. Both graphite and graphene grown by chemical vapor deposition (CVD) were used as starting materials. The best route toward GPh consisted of the initial reduction of graphite with a Na/K alloy in 1,2-dimethoxyethane (DME) as it yields the highest overall homogeneity of products reflected in the widths of the Raman ID/IG histograms. The Raman results correlate nicely with parallel thermogravimetric analysis (TGA) coupled with mass spectrometry (MS) studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...