ABSTRACT
Ecstasy is the popular name of the abuse drug 3,4-methylenedioxymethamphetamine (MDMA) that decreases immunity in animals. The mechanisms that generate such alterations are still controversial. Seven independent pharmacological approaches were performed in mice to identify the possible mechanisms underlying the decrease of neutrophil activity induced by MDMA and the possible effects of MDMA on host resistance to Listeria monocytogenes. Our data showed that MDMA (10 mg kg(-1)) administration decreases NFκB expression in circulating neutrophils. Metyrapone or RU-486 administration prior to MDMA treatment abrogated MDMA effects on neutrophil activity and NFκB expression, while 6-OHDA or ICI-118,551 administration did not. As MDMA treatment increased the plasmatic levels of adrenaline and noradrenaline, propranolol pre-treatment effects were also evaluated. Propranolol suppressed both MDMA-induced increase in corticosterone serum levels and its effects on neutrophil activity. In a L. monocytogenes experimental infection context, we showed that MDMA: induced myelosuppression by decreasing granulocyte-macrophage hematopoietic progenitors (CFU-GM) in the bone marrow but increased CFU-GM in the spleen; decreased circulating leukocytes and bone marrow cellularity and increased spleen cellularity; decreased pro-inflammatory cytokine (IL-12p70, TNF, IFN-γ, IL-6) and chemokine (MCP-1) production 24 h after the infection; increased the production of pro-inflammatory cytokines and chemokines 72 h after infection and decreased IL-10 levels at all time points analyzed. It was proposed that MDMA immunosuppressive effects on neutrophil activity and host resistance to L monocytogenes rely on NFκB signaling, being mediated by HPA axis activity and corticosterone.