Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Biol ; 201(4): 613-29, 2013 May 13.
Article in English | MEDLINE | ID: mdl-23649808

ABSTRACT

Cellular senescence irreversibly arrests proliferation in response to potentially oncogenic stress. Senescent cells also secrete inflammatory cytokines such as IL-6, which promote age-associated inflammation and pathology. HMGB1 (high mobility group box 1) modulates gene expression in the nucleus, but certain immune cells secrete HMGB1 as an extracellular Alarmin to signal tissue damage. We show that nuclear HMGB1 relocalized to the extracellular milieu in senescent human and mouse cells in culture and in vivo. In contrast to cytokine secretion, HMGB1 redistribution required the p53 tumor suppressor, but not its activator ATM. Moreover, altered HMGB1 expression induced a p53-dependent senescent growth arrest. Senescent fibroblasts secreted oxidized HMGB1, which stimulated cytokine secretion through TLR-4 signaling. HMGB1 depletion, HMGB1 blocking antibody, or TLR-4 inhibition attenuated senescence-associated IL-6 secretion, and exogenous HMGB1 stimulated NF-κB activity and restored IL-6 secretion to HMGB1-depleted cells. Our findings identify senescence as a novel biological setting in which HMGB1 functions and link HMGB1 redistribution to p53 activity and senescence-associated inflammation.


Subject(s)
Gene Expression Regulation , HMGB1 Protein/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Ataxia Telangiectasia Mutated Proteins , Cell Cycle Proteins/metabolism , Cell Nucleus/metabolism , Cell Proliferation , Cellular Senescence , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cytokines/metabolism , DNA-Binding Proteins/metabolism , Fibroblasts/metabolism , Humans , Inflammation , Interleukin-6/metabolism , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Toll-Like Receptor 4/metabolism , Tumor Suppressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...