Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 39(21): 6114-7, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25361292

ABSTRACT

We propose and experimentally demonstrate a method based on Brillouin optical time-domain analysis to measure the longitudinal signal power distribution along phase-sensitive fiber-optical parametric amplifiers (PS-FOPAs). Experimental results show that the amplification of a PS-FOPA could go through different longitudinal profiles and yet finish with the same overall gain. This behavior is in sheer contrast with theoretical expectations, according to which longitudinal gain distribution should follow certain profiles determined by the initial relative phase difference but can never end up in the same overall gain. The gap between theory and experiment only becomes evident when the pump wavelength is within the fluctuation range of the zero dispersion wavelength (ZDW) of the PS-FOPA.

2.
Opt Express ; 22(4): 4606-19, 2014 Feb 24.
Article in English | MEDLINE | ID: mdl-24663780

ABSTRACT

The generation of pulses in dual-pump fiber optical parametric amplifier is investigated. Theoretically, it is shown that in an analogical manner to pulse generation in single-pump fiber optical parametric amplifiers, the generated pulse shape depends on the linear phase mismatch between the interacting waves. However the dual-pump architecture allows for the bounding of the phase mismatch over a wide bandwidth. This feature permits the generation of uniform pulses over a wide bandwidth, contrary to the single-pump architecture. Using the developed theory, a pulse source with uniform pulses at 5 GHz repetition rate and duty cycle of 0.265 over 40 nm is demonstrated.

3.
Nat Commun ; 4: 2898, 2013.
Article in English | MEDLINE | ID: mdl-24301610

ABSTRACT

Sinc-shaped Nyquist pulses possess a rectangular spectrum, enabling data to be encoded in a minimum spectral bandwidth and satisfying by essence the Nyquist criterion of zero inter-symbol interference (ISI). This property makes them very attractive for communication systems since data transmission rates can be maximized while the bandwidth usage is minimized. However, most of the pulse-shaping methods reported so far have remained rather complex and none has led to ideal sinc pulses. Here a method to produce sinc-shaped Nyquist pulses of very high quality is proposed based on the direct synthesis of a rectangular-shaped and phase-locked frequency comb. The method is highly flexible and can be easily integrated in communication systems, potentially offering a substantial increase in data transmission rates. Further, the high quality and wide tunability of the reported sinc-shaped pulses can also bring benefits to many other fields, such as microwave photonics, light storage and all-optical sampling.


Subject(s)
Models, Theoretical , Optics and Photonics , Signal Processing, Computer-Assisted , Fiber Optic Technology
4.
Opt Express ; 20(26): B558-65, 2012 Dec 10.
Article in English | MEDLINE | ID: mdl-23262902

ABSTRACT

A novel method using optical fiber parametric amplification and phase modulation is proposed in order to generate Nyquist pulses. Using parabolic pulses as a pump, we show theoretically that it is possible to generate Nyquist pulses. Furthermore, we show that by using a sinusoidal pump (pump intensity modulated by an RF tone), it is possible to obtain pulses with characteristics that are close to Nyquist limited pulses. We demonstrate experimentally the generation of bandwidth limited pulses with full width half maximum of 14 ps at 10 GHz repetition rate. We also discuss limitations of this method and means to overcome these limitations.

5.
Opt Express ; 20(24): 27344-54, 2012 Nov 19.
Article in English | MEDLINE | ID: mdl-23187589

ABSTRACT

In a recent study, the theory of pulse generation with fiber optical parametric amplification using sinusoidal (clock) intensity modulated pump was revisited. This work showed that the pulses generated through such parametric interaction exhibit a shape which depends on the signal detuning with respect to the pump position (i.e. linear phase mismatch). A near Gaussian shape can only be achieved over a small region of the gain spectrum, close to the maximum gain location. Towards the extremities of the gain spectrum, the generated pulses take a near Sinc shape which can have many potential applications such as for all-optical Nyquist limited transmitters and/or receivers. In this paper we experimentally verify the theory at repetition rates up to 40 GHz. We also discuss the impact of noise, pump saturation and walk-off on the generated pulses.


Subject(s)
Amplifiers, Electronic , Optical Fibers , Oscillometry/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Equipment Design
6.
Opt Lett ; 33(19): 2203-5, 2008 Oct 01.
Article in English | MEDLINE | ID: mdl-18830352

ABSTRACT

By using the four-sideband theory, we analyze the gain spectrum in wideband two-pump fiber optical parametric amplifiers and predict gain ripples over the flat gain region. We derive an approximation of their pseudo-periods and discuss methods for reducing their amplitudes.

7.
Opt Lett ; 31(13): 2036-8, 2006 Jul 01.
Article in English | MEDLINE | ID: mdl-16770424

ABSTRACT

We experimentally demonstrate that continuous-wave supercontinuum generation in optical fibers can be significantly enhanced by using both multiwavelength pumping and dispersion management. We show by detailed spectral analysis that continuum enhancement is achieved mainly through a combination of Raman-assisted modulation instabilities, soliton compression, and dispersive wave generation. With this technique, an 800 nm wide (from 1.2 to 2.0 microm) 2 W supercontinuum source is reported that uses a three-wavelength pump and a dispersion-tailored four-optical fibers arrangement.

SELECTION OF CITATIONS
SEARCH DETAIL
...