Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 107(2-3): 535-542, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36607404

ABSTRACT

Studies on the chemical mechanisms of furfural formation showed the possibility to apply a new differential catalysis of hemicellulose - its depolymerisation and pentose dehydration to furfural. This change led to the increase in furfural yield and essential decrease of cellulose destruction. The lignocellulose residue that remains after the production of furfural may be subjected to enzymatic hydrolysis to glucose and the subsequent fermentation to ethanol. The remaining lignin appeared to be suitable for the production of additional various value-added products including medicinal mushrooms and laccase-containing enzyme complexes. Based on these developments, an innovative concept is proposed for the waste-free use of lignocellulose to obtain various valuable products. KEY POINTS: • New chemical mechanism of furfural production. • New lignocellulose pretreatment does not damage cellulose and lignin. • Lignocellulose may be processed using waste-free technology.


Subject(s)
Ethanol , Lignin , Lignin/metabolism , Furaldehyde , Cellulose , Hydrolysis , Fermentation
2.
Appl Microbiol Biotechnol ; 102(14): 6269-6277, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29804136

ABSTRACT

This study investigates biofuel production from wheat straw hydrolysate, from which furfural was extracted using a patented method developed at the Latvian State Institute of Wood Chemistry. The solid remainder after furfural extraction, corresponding to 67.6% of the wheat straw dry matter, contained 69.9% cellulose of which 4% was decomposed during the furfural extraction and 26.3% lignin. Enzymatic hydrolysis released 44% of the glucose monomers in the cellulose. The resulting hydrolysate contained mainly glucose and very little amount of acetic acid. Xylose was not detectable. Consequently, the undiluted hydrolysate did not inhibit growth of yeast strains belonging to Saccharomyces cerevisiae, Lipomyces starkeyi, and Rhodotorula babjevae. In the fermentations, average final ethanol concentrations of 23.85 g/l were obtained, corresponding to a yield of 0.53 g ethanol per g released glucose. L. starkeyi generated lipids with a rate of 0.08 g/h and a yield of 0.09 g per g consumed glucose. R. babjevae produced lipids with a rate of 0.18 g/h and a yield of 0.17 per g consumed glucose. In both yeasts, desaturation increased during cultivation. Remarkably, the R. babjevae strain used in this study produced considerable amounts of heptadecenoic, α,- and γ-linolenic acid.


Subject(s)
Biofuels , Ethanol/metabolism , Industrial Microbiology/methods , Lipids/biosynthesis , Triticum/metabolism , Yeasts/metabolism , Ethanol/analysis , Fermentation , Furaldehyde/isolation & purification , Hydrolysis , Lipids/analysis , Triticum/chemistry , Yeasts/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...