Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Pancreas ; 53(2): e180-e186, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38194643

ABSTRACT

OBJECTIVE: The aim of the study is to assess the relationship between magnetic resonance imaging (MRI)-based estimation of pancreatic fat and histology-based measurement of pancreatic composition. MATERIALS AND METHODS: In this retrospective study, MRI was used to noninvasively estimate pancreatic fat content in preoperative images from high-risk individuals and disease controls having normal pancreata. A deep learning algorithm was used to label 11 tissue components at micron resolution in subsequent pancreatectomy histology. A linear model was used to determine correlation between histologic tissue composition and MRI fat estimation. RESULTS: Twenty-seven patients (mean age 64.0 ± 12.0 years [standard deviation], 15 women) were evaluated. The fat content measured by MRI ranged from 0% to 36.9%. Intrapancreatic histologic tissue fat content ranged from 0.8% to 38.3%. MRI pancreatic fat estimation positively correlated with microanatomical composition of fat (r = 0.90, 0.83 to 0.95], P < 0.001); as well as with pancreatic cancer precursor ( r = 0.65, P < 0.001); and collagen ( r = 0.46, P < 0.001) content, and negatively correlated with pancreatic acinar ( r = -0.85, P < 0.001) content. CONCLUSIONS: Pancreatic fat content, measurable by MRI, correlates to acinar content, stromal content (fibrosis), and presence of neoplastic precursors of cancer.


Subject(s)
Adipose Tissue , Magnetic Resonance Imaging , Pancreas, Exocrine , Aged , Female , Humans , Middle Aged , Adipose Tissue/diagnostic imaging , Magnetic Resonance Imaging/methods , Pancreas/diagnostic imaging , Pancreas/pathology , Pancreas, Exocrine/diagnostic imaging , Pancreatic Neoplasms/pathology , Retrospective Studies
2.
Int J Comput Assist Radiol Surg ; 18(7): 1135-1142, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37160580

ABSTRACT

PURPOSE: Recent advances in computer vision and machine learning have resulted in endoscopic video-based solutions for dense reconstruction of the anatomy. To effectively use these systems in surgical navigation, a reliable image-based technique is required to constantly track the endoscopic camera's position within the anatomy, despite frequent removal and re-insertion. In this work, we investigate the use of recent learning-based keypoint descriptors for six degree-of-freedom camera pose estimation in intraoperative endoscopic sequences and under changes in anatomy due to surgical resection. METHODS: Our method employs a dense structure from motion (SfM) reconstruction of the preoperative anatomy, obtained with a state-of-the-art patient-specific learning-based descriptor. During the reconstruction step, each estimated 3D point is associated with a descriptor. This information is employed in the intraoperative sequences to establish 2D-3D correspondences for Perspective-n-Point (PnP) camera pose estimation. We evaluate this method in six intraoperative sequences that include anatomical modifications obtained from two cadaveric subjects. RESULTS: Show that this approach led to translation and rotation errors of 3.9 mm and 0.2 radians, respectively, with 21.86% of localized cameras averaged over the six sequences. In comparison to an additional learning-based descriptor (HardNet++), the selected descriptor can achieve a better percentage of localized cameras with similar pose estimation performance. We further discussed potential error causes and limitations of the proposed approach. CONCLUSION: Patient-specific learning-based descriptors can relocalize images that are well distributed across the inspected anatomy, even where the anatomy is modified. However, camera relocalization in endoscopic sequences remains a persistently challenging problem, and future research is necessary to increase the robustness and accuracy of this technique.


Subject(s)
Endoscopy , Surgery, Computer-Assisted , Humans , Endoscopy/methods , Rotation
3.
Med Image Anal ; 76: 102306, 2022 02.
Article in English | MEDLINE | ID: mdl-34879287

ABSTRACT

Recent developments in data science in general and machine learning in particular have transformed the way experts envision the future of surgery. Surgical Data Science (SDS) is a new research field that aims to improve the quality of interventional healthcare through the capture, organization, analysis and modeling of data. While an increasing number of data-driven approaches and clinical applications have been studied in the fields of radiological and clinical data science, translational success stories are still lacking in surgery. In this publication, we shed light on the underlying reasons and provide a roadmap for future advances in the field. Based on an international workshop involving leading researchers in the field of SDS, we review current practice, key achievements and initiatives as well as available standards and tools for a number of topics relevant to the field, namely (1) infrastructure for data acquisition, storage and access in the presence of regulatory constraints, (2) data annotation and sharing and (3) data analytics. We further complement this technical perspective with (4) a review of currently available SDS products and the translational progress from academia and (5) a roadmap for faster clinical translation and exploitation of the full potential of SDS, based on an international multi-round Delphi process.


Subject(s)
Data Science , Machine Learning , Humans
5.
Alzheimers Res Ther ; 10(1): 20, 2018 02 16.
Article in English | MEDLINE | ID: mdl-29452606

ABSTRACT

CORRECTION: The correct title of the article [1] should be "Integrating multiple data sources (MUDS) for meta-analysis to improve patient-centered outcomes research: a protocol". The article is a protocol for a methodological study, not a systematic review.

6.
J Clin Epidemiol ; 91: 95-110, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28842290

ABSTRACT

OBJECTIVES: The objective of this study was to determine whether disagreements among multiple data sources affect systematic reviews of randomized clinical trials (RCTs). STUDY DESIGN AND SETTING: Eligible RCTs examined gabapentin for neuropathic pain and quetiapine for bipolar depression, reported in public (e.g., journal articles) and nonpublic sources (clinical study reports [CSRs] and individual participant data [IPD]). RESULTS: We found 21 gabapentin RCTs (74 reports, 6 IPD) and 7 quetiapine RCTs (50 reports, 1 IPD); most were reported in journal articles (18/21 [86%] and 6/7 [86%], respectively). When available, CSRs contained the most trial design and risk of bias information. CSRs and IPD contained the most results. For the outcome domains "pain intensity" (gabapentin) and "depression" (quetiapine), we found single trials with 68 and 98 different meta-analyzable results, respectively; by purposefully selecting one meta-analyzable result for each RCT, we could change the overall result for pain intensity from effective (standardized mean difference [SMD] = -0.45; 95% confidence interval [CI]: -0.63 to -0.27) to ineffective (SMD = -0.06; 95% CI: -0.24 to 0.12). We could change the effect for depression from a medium effect (SMD = -0.55; 95% CI: -0.85 to -0.25) to a small effect (SMD = -0.26; 95% CI: -0.41 to -0.1). CONCLUSIONS: Disagreements across data sources affect the effect size, statistical significance, and interpretation of trials and meta-analyses.


Subject(s)
Bias , Randomized Controlled Trials as Topic/methods , Randomized Controlled Trials as Topic/standards , Amines/therapeutic use , Bipolar Disorder/drug therapy , Cyclohexanecarboxylic Acids/therapeutic use , Gabapentin , Humans , Meta-Analysis as Topic , Neuralgia/drug therapy , Quetiapine Fumarate/therapeutic use , Treatment Outcome , gamma-Aminobutyric Acid/therapeutic use
8.
Syst Rev ; 4: 143, 2015 11 02.
Article in English | MEDLINE | ID: mdl-26525044

ABSTRACT

BACKGROUND: Systematic reviews should provide trustworthy guidance to decision-makers, but their credibility is challenged by the selective reporting of trial results and outcomes. Some trials are not published, and even among clinical trials that are published partially (e.g., as conference abstracts), many are never published in full. Although there are many potential sources of published and unpublished data for systematic reviews, there are no established methods for choosing among multiple reports or data sources about the same trial. METHODS: We will conduct systematic reviews of the effectiveness and safety of two interventions following the Institute of Medicine (IOM) guidelines: (1) gabapentin for neuropathic pain and (2) quetiapine for bipolar depression. For the review of gabapentin, we will include adult participants with neuropathic pain who do not require ventilator support. For the review of quetiapine, we will include adult participants with acute bipolar depression (excluding mixed or rapid cycling episodes). We will compare these drugs (used alone or in combination with other interventions) with placebo or with the same intervention alone; direct comparisons with other medications will be excluded. For each review, we will conduct highly sensitive electronic searches, and the results of the searches will be assessed by two independent reviewers. Outcomes, study characteristics, and risk of bias ratings will be extracted from multiple reports by two individuals working independently, stored in a publicly available database (Systematic Review Data Repository) and analyzed using commonly available statistical software. In each review, we will conduct a series of meta-analyses using data from different sources to determine how the results are affected by the inclusion of data from multiple published sources (e.g., journal articles and conference abstracts) as well as unpublished aggregate data (e.g., "clinical study reports") and individual participant data (IPD). We will identify patient-centered outcomes in each report and identify differences in the reporting of these outcomes across sources. SYSTEMATIC REVIEW REGISTRATION: CRD42015014037 , CRD42015014038.


Subject(s)
Meta-Analysis as Topic , Outcome Assessment, Health Care/statistics & numerical data , Patient-Centered Care/statistics & numerical data , Research Design , Amines/therapeutic use , Analgesics/therapeutic use , Antipsychotic Agents , Bipolar Disorder/drug therapy , Cyclohexanecarboxylic Acids/therapeutic use , Data Interpretation, Statistical , Gabapentin , Humans , Neuralgia/drug therapy , Quetiapine Fumarate/therapeutic use , Selection Bias , Systematic Reviews as Topic , gamma-Aminobutyric Acid/therapeutic use
9.
BMC Med ; 9: 79, 2011 Jun 27.
Article in English | MEDLINE | ID: mdl-21707969

ABSTRACT

Network meta-analysis, in the context of a systematic review, is a meta-analysis in which multiple treatments (that is, three or more) are being compared using both direct comparisons of interventions within randomized controlled trials and indirect comparisons across trials based on a common comparator. To ensure validity of findings from network meta-analyses, the systematic review must be designed rigorously and conducted carefully. Aspects of designing and conducting a systematic review for network meta-analysis include defining the review question, specifying eligibility criteria, searching for and selecting studies, assessing risk of bias and quality of evidence, conducting a network meta-analysis, interpreting and reporting findings. This commentary summarizes the methodologic challenges and research opportunities for network meta-analysis relevant to each aspect of the systematic review process based on discussions at a network meta-analysis methodology meeting we hosted in May 2010 at the Johns Hopkins Bloomberg School of Public Health. Since this commentary reflects the discussion at that meeting, it is not intended to provide an overview of the field.


Subject(s)
Biomedical Research/methods , Meta-Analysis as Topic , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...