Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
JSES Rev Rep Tech ; 4(2): 189-195, 2024 May.
Article in English | MEDLINE | ID: mdl-38706678

ABSTRACT

Background: In baseball, repetitive pitching leads to medial elbow injuries, particularly to the ulnar collateral ligament (UCL). To prevent pitchers from UCL injuries, it is important to quantify the response to elbow stress. Repetitive elbow external valgus torque and muscular fatigue induced by repetitive pitching could affect markers of the response, that is, humeroulnar joint gap and UCL morphology. The aims of the study were three-folded: to investigate the effect of (1) exerted handgrip force on the humeroulnar joint gap, (2) repetitive pitching on the humeroulnar joint gap and the UCL morphology, and (3) exerted handgrip force on the humeroulnar joint gap for different levels of elbow valgus stress is different after compared to before repetitive pitching in asymptomatic baseball pitchers. Methods: Medial elbow ultrasound images were collected in 15 asymptomatic male baseball pitchers. Three levels of static elbow valgus stress (0N, 50N, 100N) were applied with a TELOS device before and after repetitive pitching and with or without handgrip force. These images were used to assess the humeroulnar joint gap size and UCL length and thickness. After 110 fastball pitches or when 80% self-perceived fatigue on a VAS scale was reached, participants were instructed to stop throwing. Repeated measures ANOVAs were used to statistically test significant differences. Results: Handgrip force did not significantly affect the humeroulnar joint gap. The UCL thickness and length and the humeroulnar joint gap were also not different after compared to before repetitive pitching. While higher levels of applied valgus stress significantly increased the humeroulnar joint gap (P < .001), this effect was not significantly different in the interaction with handgrip force and repetitive pitching. Conclusion: The humeroulnar joint gap changes for different levels of elbow valgus stress. However, adult baseball pitchers did not respond to elbow stress after a single pitching session with or without submaximal handgrip force in the humeroulnar joint gap and UCL morphology.

2.
J Sports Sci ; 42(7): 611-620, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38752925

ABSTRACT

Accurate assessment of rolling resistance is important for wheelchair propulsion analyses. However, the commonly used drag and deceleration tests are reported to underestimate rolling resistance up to 6% due to the (neglected) influence of trunk motion. The first aim of this study was to investigate the accuracy of using trunk and wheelchair kinematics to predict the intra-cyclical load distribution, more particularly front wheel loading, during hand-rim wheelchair propulsion. Secondly, the study compared the accuracy of rolling resistance determined from the predicted load distribution with the accuracy of drag test-based rolling resistance. Twenty-five able-bodied participants performed hand-rim wheelchair propulsion on a large motor-driven treadmill. During the treadmill sessions, front wheel load was assessed with load pins to determine the load distribution between the front and rear wheels. Accordingly, a machine learning model was trained to predict front wheel load from kinematic data. Based on two inertial sensors (attached to the trunk and wheelchair) and the machine learning model, front wheel load was predicted with a mean absolute error (MAE) of 3.8% (or 1.8 kg). Rolling resistance determined from the predicted load distribution (MAE: 0.9%, mean error (ME): 0.1%) was more accurate than drag test-based rolling resistance (MAE: 2.5%, ME: -1.3%).


Subject(s)
Torso , Wheelchairs , Humans , Biomechanical Phenomena , Male , Adult , Female , Young Adult , Torso/physiology , Machine Learning , Equipment Design , Weight-Bearing/physiology , Exercise Test/methods
3.
Sports Biomech ; : 1-16, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38353031

ABSTRACT

The baseball pitch is a repetitive, full-body throwing motion that exposes the elbow to significant loads, leading to a high incidence of elbow injuries. Elbow injuries in pitching are often attributed to high external valgus torques as these are generally considered to be a good proxy for the load on the Ulnar Collateral Ligament. The aim of the study is to contribute to elbow load monitoring by developing a prediction model based on the pelvis and trunk peak angular velocities and their separation time. Eleven male youth elite baseball pitchers (age 17 ± 2.2 years) threw 25 fastballs at full effort off a mound. Two-level varying-intercept, varying-slope Bayesian models were used to predict external valgus torque based on (inter)segmental rotation in fastball pitching with pitcher's weight and height added to strengthen the individualisation of the prediction. The results revealed the high predictive performance of the models including a set of kinematic parameters trunk peak angular velocity and the separation time between the pelvis and trunk peak angular velocities. Such an approach allows individualised prediction of the external valgus torque for each pitcher, which has a great practical advantage compared to group-based predictions in terms of injury assessment and injury prevention.

4.
J Biomech ; 163: 111927, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38211392

ABSTRACT

In wheelchair sports, there is an increasing need to monitor mechanical power in the field. When rolling resistance is known, inertial measurement units (IMUs) can be used to determine mechanical power. However, upper body (i.e., trunk) motion affects the mass distribution between the small front and large rear wheels, thus affecting rolling resistance. Therefore, drag tests - which are commonly used to estimate rolling resistance - may not be valid. The aim of this study was to investigate the influence of trunk motion on mechanical power estimates in hand-rim wheelchair propulsion by comparing instantaneous resistance-based power loss with drag test-based power loss. Experiments were performed with no, moderate and full trunk motion during wheelchair propulsion. During these experiments, power loss was determined based on 1) the instantaneous rolling resistance and 2) based on the rolling resistance determined from drag tests (thus neglecting the effects of trunk motion). Results showed that power loss values of the two methods were similar when no trunk motion was present (mean difference [MD] of 0.6 ± 1.6 %). However, drag test-based power loss was underestimated up to -3.3 ± 2.3 % MD when the extent of trunk motion increased (r = 0.85). To conclude, during wheelchair propulsion with active trunk motion, neglecting the effects of trunk motion leads to an underestimated mechanical power of 1 to 6 % when it is estimated with drag test values. Depending on the required accuracy and the amount of trunk motion in the target group, the influence of trunk motion on power estimates should be corrected for.


Subject(s)
Movement , Wheelchairs , Motion , Biomechanical Phenomena
5.
Sensors (Basel) ; 23(23)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38067746

ABSTRACT

The large stream of data from wearable devices integrated with sports routines has changed the traditional approach to athletes' training and performance monitoring. However, one of the challenges of data-driven training is to provide actionable insights tailored to individual training optimization. In baseball, the pitching mechanics and pitch type play an essential role in pitchers' performance and injury risk management. The optimal manipulation of kinematic and temporal parameters within the kinetic chain can improve the pitcher's chances of success and discourage the batter's anticipation of a particular pitch type. Therefore, the aim of this study was to provide a machine learning approach to pitch type classification based on pelvis and trunk peak angular velocity and their separation time recorded using wearable sensors (PITCHPERFECT). The Naive Bayes algorithm showed the best performance in the binary classification task and so did Random Forest in the multiclass classification task. The accuracy of Fastball classification was 71%, whilst the accuracy of the classification of three different pitch types was 61.3%. The outcomes of this study demonstrated the potential for the utilization of wearables in baseball pitching. The automatic detection of pitch types based on pelvis and trunk kinematics may provide actionable insight into pitching performance during training for pitchers of various levels of play.


Subject(s)
Baseball , Sports , Humans , Biomechanical Phenomena , Bayes Theorem , Pelvis
6.
Sci Rep ; 13(1): 17250, 2023 10 11.
Article in English | MEDLINE | ID: mdl-37821633

ABSTRACT

In baseball pitchers the elbow is exposed to high and repetitive loads (i.e. external valgus torque), caused by pitching a high number of balls in a practice session or game. This can result in overuse injuries like the ulnar collateral ligament (UCL) injury. To understand injury mechanisms, the effect of repetitive pitching on the elbow load magnitude and variability was investigated. In addition, we explored whether repetitive pitching affects elbow muscle activation during pitching. Fifteen pitchers threw each 60 to 110 balls. The external valgus torque and electromyography of three elbow muscles were quantified during each pitch. Linear mixed model analyses were performed to investigate the effect of repetitive pitching. On a group level, the linear mixed models showed no significant associations of repetitive pitching with valgus torque magnitude and variability and elbow muscle activity. Significant differences exist between pitchers in their individual trajectories in elbow valgus torque and muscle activity with repetitive pitching. This shows the importance of individuality in relation to repetitive pitching. In order to achieve effective elbow injury prevention in baseball pitching, individual characteristics of changes in elbow load and muscle activity in relation to the development of UCL injuries should be investigated.


Subject(s)
Arm Injuries , Baseball , Elbow Joint , Humans , Elbow , Baseball/injuries , Elbow Joint/physiology , Arm/physiology , Biomechanical Phenomena/physiology
7.
Arch Orthop Trauma Surg ; 143(6): 3119-3128, 2023 Jun.
Article in English | MEDLINE | ID: mdl-35840714

ABSTRACT

INTRODUCTION: It is unclear if the collar and cuff treatment improve alignment in displaced surgical neck fractures of the proximal humerus. Therefore, this study evaluated if the neckshaft angle and extent of displacement would improve between trauma and onset of radiographically visible callus in non-operatively treated surgical neck fractures (Boileau type A, B, C). MATERIALS AND METHODS: A consecutive series of patients (≥ 18 years old) were retrospectively evaluated from a level 1 trauma center in Australia (inclusion period: 2016-2020) and a level 2 trauma center in the Netherlands (inclusion period: 2004 to 2018). Patients were included if they sustained a Boileau-type fracture and underwent initial non-operative treatment. The first radiograph had to be obtained within 24 h after the initial injury and the follow-up radiograph(s) 1 week after trauma and before the start of radiographically visible callus. On each radiograph, the maximal medial gap (MMG), maximal lateral gap (MLG), and neck-shaft angle (NSA) were measured. Linear mixed modelling was performed to evaluate if these measurements would improve over time. RESULTS: Sixty-seven patients were included: 25 type A, 11 type B, and 31 type C fractures. The mean age (range) was 68 years (24-93), and the mean number (range) of follow-up radiographs per patient was 1 (1-4). Linear mixed modelling on both MMG and MLG revealed no improvement during follow-up among the three groups. Mean NSA of type A fractures improved significantly from 161° at trauma to 152° at last follow-up (p-value = 0.004). CONCLUSIONS: Apart from humeral head angulation improvement in type A, there is no increase nor reduction in displacement among the three fracture patterns. Therefore, it is advised that surgical decision-making should be performed immediately after trauma. LEVEL OF CLINICAL EVIDENCE: Level IV, retrospective case series.


Subject(s)
Humeral Fractures , Shoulder Fractures , Humans , Aged , Adolescent , Retrospective Studies , Shoulder Fractures/surgery , Fracture Fixation, Internal , Radiography , Humeral Head , Treatment Outcome , Humeral Fractures/diagnostic imaging , Humeral Fractures/surgery
8.
JSES Int ; 6(6): 970-977, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36353427

ABSTRACT

Background: After latissimus dorsi transfer (LDT), an increase in scapulothoracic (ST) contribution in thoracohumeral (TH) elevation is observed when compared to the asymptomatic shoulder. It is not known which shoulder muscles contribute to this change in shoulder kinematics, and whether the timing of muscle recruitment has altered after LDT. The aim of the study was to identify which shoulder muscles and what timing of muscle recruitment are responsible for the increased ST contribution and shoulder elevation after LDT for a massive irreparable posterosuperior rotator cuff tear (MIRT). Methods: Thirteen patients with a preoperative pseudoparalysis and MIRT were recruited after LDT with a minimum follow-up of 1 year. Three-dimensional electromagnetic tracking was used to assess maximum active elevation of the shoulder (MAES) in both the LDT and the asymptomatic contralateral shoulder (ACS). Surface electromyography (EMG) tracked activation (% EMG max) and activation timing of the latissimus dorsi (LD), deltoid, teres major, trapezius (upper, middle and lower) and serratus anterior muscles were collected. MAES was studied in forward flexion, scapular abduction and abduction in the coronal plane. Results: In MAES, no difference in thoracohumeral motion was observed between the LDT and ACS, P = .300. However, the glenohumeral motion for MAES was significantly lower in LDT shoulders F(1,12) = 11.230, P = .006. The LD % EMG max did not differ between the LDT and ACS in MAES. A higher % EMG max was found for the deltoid F(1,12) = 17.241, P = .001, and upper trapezius F(1,10) = 13.612, P = .004 in the LDT shoulder during MAES. The middle trapezius only showed a higher significant difference in % EMG max for scapular abduction, P = .020 (LDT, 52.3 ± 19.4; ACS, 38.1 ± 19.7).The % EMG max of the lower trapezius, serratus anterior and teres major did not show any difference in all movement types between the LDT and ACS and no difference in timing of recruitment of all the shoulder muscles was observed. Conclusions: After LDT in patients with a MIRT and preoperative pseudoparalysis, the LD muscle did not alter its % EMG max during MAES when compared to the ACS. The cranial transfer of the LD tendon with its native %EMG max, together with the increased %EMG max of the deltoid, middle and upper trapezius muscles could be responsible for the increased ST contribution. The increased glenohumeral joint reaction force could in turn increase active elevation after LDT in a previous pseudoparalytic shoulder.

9.
Sports Biomech ; : 1-15, 2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36226680

ABSTRACT

It is generally accepted that most of the energy transferred to the ball during a baseball pitch is generated in the trunk and lower extremities. Therefore, purpose of this study was to assess the energy flow through the lower extremities during a baseball pitch. It was hypothesised that the (stabilising) leading leg mainly transfers energy in a distal-to-proximal order as a kinetic chain while the (driving) trailing leg generates most energy, primarily at the hip. A joint power analysis was used to determine the rates of energy (power) transfer and generation in the ankles, knees, hips and lumbosacral joint (L5-S1) for 22 youth pitchers. Analyses showed that the leading leg mainly transfers energy upwards in a distal-to-proximal order just before stride foot contact. Furthermore, energy generation was higher in the trailing leg and primarily arose from the trailing hip. In conclusion, the legs contribute differently to the energy flow where the leading leg acts as an initial kinetic chain component and the trailing leg drives the pitch by generating energy. The actions of both legs are combined in the pelvis and passed on to the subsequent, more commonly discussed, open kinetic chain starting at L5-S1.

11.
Front Rehabil Sci ; 3: 777085, 2022.
Article in English | MEDLINE | ID: mdl-36188930

ABSTRACT

The acquisition of daily handrim wheelchair propulsion skill as a multi-layered phenomenon has been studied in the past. Wheelchair racing, however, is considerably different from daily handrim wheelchair propulsion in terms of propulsion technique, as well as the underlying equipment and interface. Understanding wheelchair racing skill acquisition is important from a general motor learning and skill acquisition perspective, but also from a performance and injury prevention perspective. The aim of the current lab-based study was 2-fold: to investigate the evolution of racing wheelchair propulsion skill among a sample of novices and to compare them with an experienced wheelchair racer under similar conditions. A convenience sample of 15 able-bodied novices (8 male, 7 female) completed a standardized three-week submaximal uninstructed practice protocol (3 weeks, 3 sessions per week, 3x4 min per session) in a racing wheelchair on an ergometer. Required wheeling velocity was set at 2.78 m/s (10 km/h) and a rolling friction coefficient of 0.011 (resulting in a mean target load of 21W) was used. For comparison, an experienced T54 Paralympic athlete completed one block of the same protocol. Kinetics, kinematics, and physiological data were captured. A mixed effects regression analysis was used to examine the effect of practice for the novices, while controlling for speed. All participants finished the protocol successfully. However, not all participants were able to achieve the target speed during the first few sessions. Statistically significant improvements over time were found for all outcome measures (i.e., lower metabolic strain, longer push and cycle times) with the exception of mean power and torque per push. The athlete used a significantly greater contact angle and showed "better" outcomes on most metabolic and kinetic variables. While the athlete used a semi-circular propulsion technique, most participants used a double looping over technique. Three weeks of uninstructed wheelchair racing practice significantly improved efficiency and skill among a group of novices, in line with previous studies on daily handrim wheelchair propulsion. The comparison with an experienced athlete expectedly showed that there is still a large performance (and knowledge) gap to be conquered.

12.
PLoS One ; 17(3): e0256455, 2022.
Article in English | MEDLINE | ID: mdl-35255091

ABSTRACT

OBJECTIVES: Home-based physiotherapy interventions to improve post-stroke mobility are successful in high-income countries. These programs require less resources compared to center-based programs. However, feasibility of such an intervention in a low and middle-income setting remains unknown. Therefore, the SunRISe (Stroke Rehabilitation In Suriname) study aimed to assess feasibility and preliminary effectiveness of a home-based semi-supervised physiotherapy intervention to promote post-stroke mobility in a low resource setting. DESIGN: Prospective randomized controlled trial. METHODS: Chronic stroke patients were recruited and randomized into either an intervention group (IG (N = 20)) or a control group (CG (N = 10)). The IG received a 3-days-a-week home-based physiotherapy program that was supervised in the first 4 weeks and tele-supervised during the second 4 weeks. The physiotherapy program consisted of walking as well as functional and mobilization exercises. The CG received usual care. Feasibility outcome measures included adherence, patient satisfaction and safety. Efficacy measures included functional exercise tolerance (six-minute walking test (6MWT), functional balance (Berg Balance Score (BBS), upper extremity (UE) function (Disabilities of the Arm, Shoulder and Hand (DASH) Questionnaire), and UE strength ((non-)paretic handgrip (HG) strength). Two-way analysis of variance was used for data analysis. RESULTS: Thirty participants (61.8 ± 9.2 years old, 13 men) were enrolled in the study. The intervention was completed by 14 participants (70%). Adherence was affected by rainy season associated infrastructural problems (n = 2), the medical status of participants (n = 3) and insufficient motivation to continue the program without direct supervision (n = 1). No adverse events were noted and participants were satisfied with the program. Functional exercise tolerance (57.2 ± 67.3m, p = 0.02) and UE function (-9.8 ± 15.2, p = 0.04) improved in the IG compared to no change in the CG. HG strength was unaltered and a ceiling effect occurred for BBS. CONCLUSION: Our home-based semi-supervised physiotherapy intervention seems safe, associated with moderate to high levels of engagement and patient satisfaction and results in functional improvements.


Subject(s)
Hand Strength , Stroke Rehabilitation , Aged , Exercise Therapy/methods , Feasibility Studies , Humans , Male , Middle Aged , Physical Therapy Modalities , Pilot Projects , Prospective Studies , Stroke Rehabilitation/methods
13.
J Shoulder Elbow Surg ; 31(7): 1357-1367, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35172211

ABSTRACT

BACKGROUND: The aim of this study was to evaluate the thoracohumeral (TH) and glenohumeral (GH) motion with muscle activity after latissimus dorsi transfer (LDT) in a shoulder with a massive irreparable posterosuperior rotator cuff tear (MIRT) and pseudoparalysis compared with the asymptomatic contralateral shoulder (ACS). METHODS: We recruited and evaluated 13 patients after LDT in a shoulder with preoperative clinical pseudoparalysis and an MIRT on magnetic resonance imaging, with a minimum follow-up period of 1 year, and with a Hamada stage of 3 or less. Three-dimensional electromagnetic tracking was used to assess shoulder active range of motion in both the LDT shoulder and the ACS. The maximal active elevation of the shoulder (MAES) was assessed and consisted of forward flexion, scapular abduction, and abduction in the coronal plane. Maximal active internal rotation and external rotation were assessed separately. Surface electromyography (EMG) was performed to track activation of the latissimus dorsi (LD) and deltoid muscles during shoulder motion. EMG was scaled to its maximal isometric voluntary contraction recorded in specified strength tests. RESULTS: In MAES, TH motion of the LDT shoulder was not significantly different from that of the ACS (F1,12 = 1.174, P = .300) but the GH contribution was significantly lower in the LDT shoulder for all motions (F1,12 = 11.230, P = .006). External rotation was significantly greater in the ACS (26° ± 10° in LDT shoulder vs. 42° ± 11° in ACS, P < .001). The LD percentage EMG maximum showed no significant difference between the LDT shoulder and ACS during MAES (F1,11 = 0.005, P = .946). During maximal active external rotation of the shoulder, the LDT shoulder showed a higher percentage EMG maximum than the ACS (3.0% ± 2.9% for LDT shoulder vs. 1.2% ± 2.0% for ACS, P = .006). CONCLUSIONS: TH motion improved after LDT in an MIRT with pseudoparalysis and was not different from the ACS except for external rotation. However, GH motion was significantly lower after LDT than in the ACS in active-elevation range of motion. The LD was active after LDT but not more than in the ACS except for active external rotation, which we did not consider relevant as the activity did not rise above 3% EMG maximum. The favorable clinical results of LDT do not seem to be related to a change in LD activation and might be explained by its effect in preventing proximal migration of the humeral head in active elevation.


Subject(s)
Rotator Cuff Injuries , Shoulder Joint , Superficial Back Muscles , Biomechanical Phenomena , Humans , Muscle Weakness , Range of Motion, Articular , Rotator Cuff Injuries/surgery , Shoulder , Shoulder Joint/surgery , Superficial Back Muscles/surgery , Tendon Transfer/methods , Treatment Outcome
14.
J Biomech ; 130: 110879, 2022 01.
Article in English | MEDLINE | ID: mdl-34871895

ABSTRACT

In wheelchair sports, the use of Inertial Measurement Units (IMUs) has proven to be one of the most accessible ways for ambulatory measurement of wheelchair kinematics. A three-IMU configuration, with one IMU attached to the wheelchair frame and two IMUs on each wheel axle, has previously shown accurate results and is considered optimal for accuracy. Configurations with fewer sensors reduce costs and could enhance usability, but may be less accurate. The aim of this study was to quantify the decline in accuracy for measuring wheelchair kinematics with a stepwise sensor reduction. Ten differently skilled participants performed a series of wheelchair sport specific tests while their performance was simultaneously measured with IMUs and an optical motion capture system which served as reference. Subsequently, both a one-IMU and a two-IMU configuration were validated and the accuracy of the two approaches was compared for linear and angular wheelchair velocity. Results revealed that the one-IMU approach show a mean absolute error (MAE) of 0.10 m/s for absolute linear velocity and a MAE of 8.1°/s for wheelchair angular velocity when compared with the reference system. The two-IMU approach showed similar differences for absolute linear wheelchair velocity (MAE 0.10 m/s), and smaller differences for angular velocity (MAE 3.0°/s). Overall, a lower number of IMUs used in the configuration resulted in a lower accuracy of wheelchair kinematics. Based on the results of this study, choices regarding the number of IMUs can be made depending on the aim, required accuracy and resources available.


Subject(s)
Sports , Wheelchairs , Biomechanical Phenomena , Humans
15.
J Spinal Cord Med ; 45(6): 916-929, 2022 11.
Article in English | MEDLINE | ID: mdl-33617411

ABSTRACT

OBJECTIVE: To describe the number, specifics and co-occurrence of shoulder pathologies detected by MRI in manual wheelchair users with spinal cord injury and to evaluate the association between shoulder pathologies and presence of shoulder pain. DESIGN: Cross-sectional observation study. SETTING: Community. PARTICIPANTS: Fifty-one wheelchair-dependent persons with spinal cord injury (44 males, 7 females, median age 50 years (IQR 14), median time since injury 24 years (IQR 16)) were allocated to pain or no-pain group based on the Wheelchair User Shoulder Pain Index. INTERVENTIONS: Not applicable. OUTCOME MEASURES: All persons underwent shoulder MRI. Pathologies were scored blinded by two experienced radiologists. Participant characteristics, number and severity of shoulder pathologies were analyzed descriptively. Logistic regression was performed to evaluate the association between MRI findings and shoulder pain. RESULTS: The median number of co-occurring MRI findings per person ranged from 0 to 19 (out of 31 possible findings). The cluster of MRI findings occurring most often together were tendon tears of supraspinatus (present in 84%), subscapularis (69%) and biceps (67%) and osteoarthritis of acromioclavicular joint (80%). When correcting for age and time since injury, the logistic regression showed no statistically significant correlation between the individual pathologies and shoulder pain. CONCLUSION: MRI findings of shoulder pathology are very frequent in persons with and without shoulder pain. Therefore, when diagnosing the cause of shoulder pain and planning interventions, health care professionals should keep this finding in mind and MRI should not be interpreted without careful consideration of clinical history and functional testing.


Subject(s)
Spinal Cord Injuries , Wheelchairs , Male , Female , Humans , Middle Aged , Shoulder Pain/diagnostic imaging , Shoulder Pain/etiology , Shoulder , Wheelchairs/adverse effects , Spinal Cord Injuries/complications , Spinal Cord Injuries/diagnostic imaging , Cross-Sectional Studies , Magnetic Resonance Imaging
16.
Sensors (Basel) ; 23(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36616649

ABSTRACT

More insight into in-field mechanical power in cyclical sports is useful for coaches, sport scientists, and athletes for various reasons. To estimate in-field mechanical power, the use of wearable sensors can be a convenient solution. However, as many model options and approaches for mechanical power estimation using wearable sensors exist, and the optimal combination differs between sports and depends on the intended aim, determining the best setup for a given sport can be challenging. This review aims to provide an overview and discussion of the present methods to estimate in-field mechanical power in different cyclical sports. Overall, in-field mechanical power estimation can be complex, such that methods are often simplified to improve feasibility. For example, for some sports, power meters exist that use the main propulsive force for mechanical power estimation. Another non-invasive method usable for in-field mechanical power estimation is the use of inertial measurement units (IMUs). These wearable sensors can either be used as stand-alone approach or in combination with force sensors. However, every method has consequences for interpretation of power values. Based on the findings of this review, recommendations for mechanical power measurement and interpretation in kayaking, rowing, wheelchair propulsion, speed skating, and cross-country skiing are done.


Subject(s)
Sports , Wearable Electronic Devices , Humans , Athletes , Mechanical Phenomena , Bicycling , Biomechanical Phenomena
17.
Front Sports Act Living ; 3: 698592, 2021.
Article in English | MEDLINE | ID: mdl-34917936

ABSTRACT

Background: Baseball pitching is associated with a high prevalence of ulnar collateral ligament injuries, potentially due to the high external valgus load on the medial side of the elbow at the instant of maximal shoulder external rotation (MER). In-vitro studies show that external valgus torque is resisted by the ulnar collateral ligament but could also be compensated by elbow muscles. As the potential active contribution of these muscles in counteracting external valgus load during baseball pitching is unknown, the aim of this study is to determine whether and to what extent the elbow muscles are active at and around MER during a fastball pitch in baseball. Methods: Eleven uninjured pitchers threw 15 fastball pitches. Surface electromyography of six muscles crossing the elbow were measured at 2000 Hz. Electromyography signals were normalized to maximal activity values. Co-contraction index (CCI) was calculated between two pairs of the flexor and extensor elbow muscles. Confidence intervals were calculated at the instant of MER. Four ranges of muscle activity were considered; 0-20% was considered low; 21-40% moderate; 41-60% high and over 60% as very high. To determine MER, the pitching motion was captured with a highspeed camera at 240 Hz. Results: The flexor pronator mass, pronator teres, triceps brachii, biceps brachii, extensor supinator mass and anconeus show moderate activity at MER. Considerable variation between participants was found in all muscles. The CCI revealed co-contraction of the two flexor-extensor muscle pairs at MER. Interpretation: The muscle activation of the flexor and pronator muscles at MER indicates a direct contribution of forearm muscles crossing the medial side of the elbow in counteracting the external valgus load during fastball pitching. The activation of both flexor and extensor muscles indicates an in-direct contributory effect as the combined activity of these muscles counteract opening of the humeroulnar joint space. We believe that active muscular contributions counteracting the elbow valgus torque can be presumed to relieve the ulnar collateral ligament from maximal stress and are thus of importance in injury risk assessment in fastball pitching in baseball.

18.
Sensors (Basel) ; 21(22)2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34833517

ABSTRACT

Ball velocity is considered an important performance measure in baseball pitching. Proper pitching mechanics play an important role in both maximising ball velocity and injury-free participation of baseball pitchers. However, an individual pitcher's characteristics display individuality and may contribute to velocity imparted to the ball. The aim of this study is to predict ball velocity in baseball pitching, such that prediction is tailored to the individual pitcher, and to investigate the added value of the individuality to predictive performance. Twenty-five youth baseball pitchers, members of a national youth baseball team and six baseball academies in The Netherlands, performed ten baseball pitches with maximal effort. The angular velocity of pelvis and trunk were measured with IMU sensors placed on pelvis and sternum, while the ball velocity was measured with a radar gun. We develop three Bayesian regression models with different predictors which were subsequently evaluated based on predictive performance. We found that pitcher's height adds value to ball velocity prediction based on body segment rotation. The developed method provides a feasible and affordable method for ball velocity prediction in baseball pitching.


Subject(s)
Baseball , Adolescent , Bayes Theorem , Biomechanical Phenomena , Humans , Rotation , Torso
19.
Front Sports Act Living ; 3: 670263, 2021.
Article in English | MEDLINE | ID: mdl-34414370

ABSTRACT

In sports, inertial measurement units are often used to measure the orientation of human body segments. A Madgwick (MW) filter can be used to obtain accurate inertial measurement unit (IMU) orientation estimates. This filter combines two different orientation estimates by applying a correction of the (1) gyroscope-based estimate in the direction of the (2) earth frame-based estimate. However, in sports situations that are characterized by relatively large linear accelerations and/or close magnetic sources, such as wheelchair sports, obtaining accurate IMU orientation estimates is challenging. In these situations, applying the MW filter in the regular way, i.e., with the same magnitude of correction at all time frames, may lead to estimation errors. Therefore, in this study, the MW filter was extended with machine learning to distinguish instances in which a small correction magnitude is beneficial from instances in which a large correction magnitude is beneficial, to eventually arrive at accurate body segment orientations in IMU-challenging sports situations. A machine learning algorithm was trained to make this distinction based on raw IMU data. Experiments on wheelchair sports were performed to assess the validity of the extended MW filter, and to compare the extended MW filter with the original MW filter based on comparisons with a motion capture-based reference system. Results indicate that the extended MW filter performs better than the original MW filter in assessing instantaneous trunk inclination (7.6 vs. 11.7° root-mean-squared error, RMSE), especially during the dynamic, IMU-challenging situations with moving athlete and wheelchair. Improvements of up to 45% RMSE were obtained for the extended MW filter compared with the original MW filter. To conclude, the machine learning-based extended MW filter has an acceptable accuracy and performs better than the original MW filter for the assessment of body segment orientation in IMU-challenging sports situations.

20.
Int Biomech ; 8(1): 19-29, 2021 12.
Article in English | MEDLINE | ID: mdl-33998377

ABSTRACT

Ulnar collateral ligament (UCL) weakening or tears occur in 16% of professional baseball pitchers. To prevent players from sustaining a UCL injury, it is important to understand the relationship between the UCL properties and elbow stabilizers with the load on the UCL during pitching. In-vitro studies showed that the ultimate external valgus torque of 34 Nm would rupture the UCL, which is in apparent conflict with the reported peak valgus torques in pitching (40-120 Nm). Assuming both observations are correct, the question rises why 'only' 16 out of 100 professional pitchers sustain a UCL rupture. Underestimation of the effect of other structures in in-vivo studies is most likely the explanation of this mismatch because the calculated in-vivo torque also includes possible contributions of functional and structural stabilizers. In-vitro studies show that the flexor-pronator mass has the potential to counteract valgus torque directly, whereas the elbow flexor-extensor muscles combined with the humeroradial joint might have an indirect effect on valgus torque by increasing the joint compression force. Accurate experimental electromyography data and a more detailed (musculoskeletal)mechanical model of the elbow are needed to investigate if and to what extent the structural and functional stabilizers can shield the UCL during pitching.


Subject(s)
Baseball , Collateral Ligament, Ulnar , Elbow Joint , Elbow , Torque
SELECTION OF CITATIONS
SEARCH DETAIL
...