Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Microbiome ; 11(1): 261, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37996939

ABSTRACT

BACKGROUND: Declines in plant biodiversity often have negative consequences for plant community productivity, and it becomes increasingly acknowledged that this may be driven by shifts in soil microbial communities. So far, the role of fungal communities in driving tree diversity-productivity relationships has been well assessed in forests. However, the role of bacteria and archaea, which are also highly abundant in forest soils and perform pivotal ecosystem functions, has been less investigated in this context. Here, we investigated how tree and shrub richness affects stand-level tree productivity by regulating bacterial and archaeal community diversity and composition. We used a landscape-scale, subtropical tree biodiversity experiment (BEF-China) where tree (1, 2, or 4 species) and shrub richness (0, 2, 4, 8 species) were modified. RESULTS: Our findings indicated a noteworthy decline in soil bacterial α-diversity as tree species richness increased from monoculture to 2- and 4- tree species mixtures, but a significant increase in archaeal α-diversity. Additionally, we observed that the impact of shrub species richness on microbial α-diversity was largely dependent on the level of tree species richness. The increase in tree species richness greatly reduced the variability in bacterial community composition and the complexity of co-occurrence network, but this effect was marginal for archaea. Both tree and shrub species richness increased the stand-level tree productivity by regulating the diversity and composition of bacterial community and archaeal diversity, with the effects being mediated via increases in soil C:N ratios. CONCLUSIONS: Our findings provide insight into the importance of bacterial and archaeal communities in driving the relationship between plant diversity and productivity in subtropical forests and highlight the necessity for a better understanding of prokaryotic communities in forest soils. Video Abstract.


Subject(s)
Ecosystem , Trees , Archaea/genetics , Soil , Biodiversity , Bacteria/genetics , Plants
2.
Nat Commun ; 14(1): 6624, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37857640

ABSTRACT

Little is currently known about how climate modulates the relationship between plant diversity and soil organic carbon and the mechanisms involved. Yet, this knowledge is of crucial importance in times of climate change and biodiversity loss. Here, we show that plant diversity is positively correlated with soil carbon content and soil carbon-to-nitrogen ratio across 84 grasslands on six continents that span wide climate gradients. The relationships between plant diversity and soil carbon as well as plant diversity and soil organic matter quality (carbon-to-nitrogen ratio) are particularly strong in warm and arid climates. While plant biomass is positively correlated with soil carbon, plant biomass is not significantly correlated with plant diversity. Our results indicate that plant diversity influences soil carbon storage not via the quantity of organic matter (plant biomass) inputs to soil, but through the quality of organic matter. The study implies that ecosystem management that restores plant diversity likely enhances soil carbon sequestration, particularly in warm and arid climates.


Subject(s)
Ecosystem , Soil , Carbon , Biodiversity , Biomass , Plants , Nitrogen
3.
Tijdschr Psychiatr ; 65(2): 113-117, 2023.
Article in Dutch | MEDLINE | ID: mdl-36912057

ABSTRACT

FETAL ALCOHOL SPECTRUM DISORDERS (FASDS) IS A CONDITION THAT IS PROBABLY OFTEN MISSED. THIS SYNDROME IS BASED ON FEATURES IN FOUR DOMAINS: 1. REDUCED HEIGHT AND WEIGHT GROWTH, 2. SPECIFIC FACIAL FEATURES, 3. PREDISPOSED CENTRAL NERVOUS SYSTEM ABNORMALITIES (INCLUDING MICROCEPHALY) OR FUNCTION (NEUROLOGICAL, PSYCHOLOGICAL AND/OR BEHAVIORAL PROBLEMS) AND 4. (SUSPECTED) PRENATAL ALCOHOL USE BY THE MOTHER. DUE TO PSYCHIATRIC AND BEHAVIORAL PROBLEMS PATIENTS MAY ALSO BE SEEN IN SPECIALIZED MENTAL HEALTH CARE. TO INCREASE THE CHANCE THAT THESE PATIENTS WILL RECEIVE AN APPROPRIATE AND EFFECTIVE TREATMENT, AWARENESS OF THIS SYNDROME IS ESSENTIAL. WE DESCRIBE THE CLINICAL PICTURE ON THE BASIS OF A CASE DESCRIPTION, PROVIDE RECENT LITERATURE AND FORMULATE RECOMMENDATIONS FOR CLINICAL PRACTICE.


Subject(s)
Fetal Alcohol Spectrum Disorders , Problem Behavior , Female , Humans , Pregnancy , Fetal Alcohol Spectrum Disorders/psychology , Fetal Alcohol Spectrum Disorders/therapy , Mothers , Treatment Outcome
4.
Nat Commun ; 14(1): 1809, 2023 03 31.
Article in English | MEDLINE | ID: mdl-37002217

ABSTRACT

Plant productivity varies due to environmental heterogeneity, and theory suggests that plant diversity can reduce this variation. While there is strong evidence of diversity effects on temporal variability of productivity, whether this mechanism extends to variability across space remains elusive. Here we determine the relationship between plant diversity and spatial variability of productivity in 83 grasslands, and quantify the effect of experimentally increased spatial heterogeneity in environmental conditions on this relationship. We found that communities with higher plant species richness (alpha and gamma diversity) have lower spatial variability of productivity as reduced abundance of some species can be compensated for by increased abundance of other species. In contrast, high species dissimilarity among local communities (beta diversity) is positively associated with spatial variability of productivity, suggesting that changes in species composition can scale up to affect productivity. Experimentally increased spatial environmental heterogeneity weakens the effect of plant alpha and gamma diversity, and reveals that beta diversity can simultaneously decrease and increase spatial variability of productivity. Our findings unveil the generality of the diversity-stability theory across space, and suggest that reduced local diversity and biotic homogenization can affect the spatial reliability of key ecosystem functions.


Subject(s)
Ecosystem , Grassland , Biomass , Biodiversity , Reproducibility of Results , Plants
5.
Ecol Lett ; 26(1): 37-52, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36414536

ABSTRACT

Soils contain biotic and abiotic legacies of previous conditions that may influence plant community biomass and associated aboveground biodiversity. However, little is known about the relative strengths and interactions of the various belowground legacies on aboveground plant-insect interactions. We used an outdoor mesocosm experiment to investigate the belowground legacy effects of range-expanding versus native plants, extreme drought and their interactions on plants, aphids and pollinators. We show that plant biomass was influenced more strongly by the previous plant community than by the previous summer drought. Plant communities consisted of four congeneric pairs of natives and range expanders, and their responses were not unanimous. Legacy effects affected the abundance of aphids more strongly than pollinators. We conclude that legacies can be contained as soil 'memories' that influence aboveground plant community interactions in the next growing season. These soil-borne 'memories' can be altered by climate warming-induced plant range shifts and extreme drought.


Subject(s)
Aphids , Soil , Animals , Droughts , Insecta , Biomass , Plants , Ecosystem
6.
Ecol Lett ; 25(12): 2699-2712, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36278303

ABSTRACT

Global change drivers, such as anthropogenic nutrient inputs, are increasing globally. Nutrient deposition simultaneously alters plant biodiversity, species composition and ecosystem processes like aboveground biomass production. These changes are underpinned by species extinction, colonisation and shifting relative abundance. Here, we use the Price equation to quantify and link the contributions of species that are lost, gained or that persist to change in aboveground biomass in 59 experimental grassland sites. Under ambient (control) conditions, compositional and biomass turnover was high, and losses (i.e. local extinctions) were balanced by gains (i.e. colonisation). Under fertilisation, the decline in species richness resulted from increased species loss and decreases in species gained. Biomass increase under fertilisation resulted mostly from species that persist and to a lesser extent from species gained. Drivers of ecological change can interact relatively independently with diversity, composition and ecosystem processes and functions such as aboveground biomass due to the individual contributions of species lost, gained or persisting.


Subject(s)
Ecosystem , Grassland , Biomass , Biodiversity , Plants
7.
Nat Ecol Evol ; 6(9): 1290-1298, 2022 09.
Article in English | MEDLINE | ID: mdl-35879541

ABSTRACT

Ecological models predict that the effects of mammalian herbivore exclusion on plant diversity depend on resource availability and plant exposure to ungulate grazing over evolutionary time. Using an experiment replicated in 57 grasslands on six continents, with contrasting evolutionary history of grazing, we tested how resources (mean annual precipitation and soil nutrients) determine herbivore exclusion effects on plant diversity, richness and evenness. Here we show that at sites with a long history of ungulate grazing, herbivore exclusion reduced plant diversity by reducing both richness and evenness and the responses of richness and diversity to herbivore exclusion decreased with mean annual precipitation. At sites with a short history of grazing, the effects of herbivore exclusion were not related to precipitation but differed for native and exotic plant richness. Thus, plant species' evolutionary history of grazing continues to shape the response of the world's grasslands to changing mammalian herbivory.


Subject(s)
Biodiversity , Herbivory , Animals , Mammals , Plants , Soil
8.
Mol Ecol ; 31(15): 4017-4030, 2022 08.
Article in English | MEDLINE | ID: mdl-35726521

ABSTRACT

It is generally assumed that the dependence of conventional agriculture on artificial fertilizers and pesticides strongly impacts the environment, while organic agriculture relying more on microbial functioning may mitigate these impacts. However, it is not well known how microbial diversity and community composition change in conventionally managed farmers' fields that are converted to organic management. Here, we sequenced bacterial and fungal communities of 34 organic fields on sand and marine clay soils in a time series (chronosequence) covering 25 years of conversion. Nearby conventional fields were used as references. We found that community composition of bacteria and fungi differed between organic and conventionally managed fields. In the organic fields, fungal diversity increased with time since conversion. However, this effect disappeared when the conventional paired fields were included. There was a relationship between pH and soil organic matter content and the diversity and community composition of bacteria and fungi. In marine clay soils, when time since organic management increased, fungal communities in organic fields became more dissimilar to those in conventional fields. We conclude that conversion to organic management in these Dutch farmers' fields did not increase microbial community diversity. Instead, we observed that in organic fields in marine clay when time since conversion increased soil fungal community composition became progressively dissimilar from that in conventional fields. Our results also showed that the paired sampling approach of organic and conventional fields was essential in order to control for environmental variation that was otherwise unaccounted for.


Subject(s)
Organic Agriculture , Soil , Agriculture/methods , Bacteria/genetics , Clay , Fungi/genetics , Organic Agriculture/methods , Soil/chemistry , Soil Microbiology
9.
ISME J ; 16(3): 617-629, 2022 03.
Article in English | MEDLINE | ID: mdl-34593996

ABSTRACT

Organisms throughout the tree of life accumulate chemical resources, in particular forms or compartments, to secure their availability for future use. Here we review microbial storage and its ecological significance by assembling several rich but disconnected lines of research in microbiology, biogeochemistry, and the ecology of macroscopic organisms. Evidence is drawn from various systems, but we pay particular attention to soils, where microorganisms play crucial roles in global element cycles. An assembly of genus-level data demonstrates the likely prevalence of storage traits in soil. We provide a theoretical basis for microbial storage ecology by distinguishing a spectrum of storage strategies ranging from surplus storage (storage of abundant resources that are not immediately required) to reserve storage (storage of limited resources at the cost of other metabolic functions). This distinction highlights that microorganisms can invest in storage at times of surplus and under conditions of scarcity. We then align storage with trait-based microbial life-history strategies, leading to the hypothesis that ruderal species, which are adapted to disturbance, rely less on storage than microorganisms adapted to stress or high competition. We explore the implications of storage for soil biogeochemistry, microbial biomass, and element transformations and present a process-based model of intracellular carbon storage. Our model indicates that storage can mitigate against stoichiometric imbalances, thereby enhancing biomass growth and resource-use efficiency in the face of unbalanced resources. Given the central roles of microbes in biogeochemical cycles, we propose that microbial storage may be influential on macroscopic scales, from carbon cycling to ecosystem stability.


Subject(s)
Ecosystem , Soil , Carbon , Carbon Cycle , Soil/chemistry , Soil Microbiology
10.
Ecol Monogr ; 92(4): e1529, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36590329

ABSTRACT

Climate change is causing range shifts of many species to higher latitudes and altitudes and increasing their exposure to extreme weather events. It has been shown that range-shifting plant species may perform differently in new soil than related natives; however, little is known about how extreme weather events affect range-expanding plants compared to related natives. In this study we used outdoor mesocosms to study how range-expanding plant species responded to extreme drought in live soil from a habitat in a new range with and without live soil from a habitat in the original range (Hungary). During summer drought, the shoot biomass of the range-expanding plant community declined. In spite of this, in the mixed community, range expanders produced more shoot biomass than congeneric natives. In mesocosms with a history of range expanders in the previous year, native plants produced less biomass. Plant legacy or soil origin effects did not change the response of natives or range expanders to summer drought. During rewetting, range expanders had less biomass than congeneric natives but higher drought resilience (survival) in soils from the new range where in the previous year native plant species had grown. The biomass patterns of the mixed plant communities were dominated by Centaurea spp.; however, not all plant species within the groups of natives and of range expanders showed the general pattern. Drought reduced the litter decomposition, microbial biomass, and abundances of bacterivorous, fungivorous, and carnivorous nematodes. Their abundances recovered during rewetting. There was less microbial and fungal biomass, and there were fewer fungivorous nematodes in soils from the original range where range expanders had grown in the previous year. We concluded that in mixed plant communities of range expanders and congeneric natives, range expanders performed better, under both ambient and drought conditions, than congeneric natives. However, when considering the responses of individual species, we observed variations among pairs of congenerics, so that under the present mixed-community conditions there was no uniformity in responses to drought of range expanders versus congeneric natives. Range-expanding plant species reduced soil fungal biomass and the numbers of soil fungivorous nematodes, suggesting that the effects of range-expanding plant species can trickle up in the soil food web.

11.
Neth Heart J ; 29(9): 423-426, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34424499
12.
Ecology ; 102(11): e03484, 2021 11.
Article in English | MEDLINE | ID: mdl-34289121

ABSTRACT

Standing dead trees (snags) decompose more slowly than downed dead wood and provide critical habitat for many species. The rate at which snags fall therefore influences forest carbon dynamics and biodiversity. Fall rates correlate strongly with mean annual temperature, presumably because warmer climates facilitate faster wood decomposition and hence degradation of the structural stability of standing wood. These faster decomposition rates coincide with turnover from fungal-dominated wood decomposer communities in cooler forests to codomination by fungi and termites in warmer regions. A key question for projecting forest dynamics is therefore whether temperature effects on wood decomposition arise primarily because warmer conditions facilitate faster decomposer metabolism, or are also influenced indirectly by belowground community turnover (e.g., termites exert additional influence beyond fungal-plus-bacterial mediated decomposition). To test between these possibilities, we simulate standing dead trees with untreated wooden posts and follow them in the field across 5 yr at 12 sites, before measuring buried, soil-air interface and aerial post sections to quantify wood decomposition and organism activities. High termite activities at the warmer sites are associated with rates of postfall that are three times higher than at the cooler sites. Termites primarily consume buried wood, with decomposition rates greatest where termite activities are highest. However, where higher microbial and termite activities co-occur, they appear to compensate for one another first, and then to slow decomposition rates at their highest activities, suggestive of interference competition. If the range of microbial and termite codomination of wood decomposer communities expands under climate warming, our data suggest that expansion will accelerate snag fall with consequent effects on forest carbon cycling and biodiversity in forests previously dominated by microbial decomposers.


Subject(s)
Forests , Wood , Carbon Cycle , Ecosystem , Trees
13.
New Phytol ; 231(4): 1353-1358, 2021 08.
Article in English | MEDLINE | ID: mdl-34008201

ABSTRACT

Plants often associate with specialized decomposer communities that increase plant litter breakdown, a phenomenon that is known as the 'home-field advantage' (HFA). Although the concept of HFA has long considered only the role of the soil microbial community, explicit consideration of the role of the microbial community on the foliage before litter fall (i.e. the phyllosphere community) may help us to better understand HFA. We investigated the occurrence of HFA in the presence vs absence of phyllosphere communities and found that HFA effects were smaller when phyllosphere communities were removed. We propose that priority effects and interactions between phyllosphere and soil organisms can help explain the positive effects of the phyllosphere at home, and suggest a path forward for further investigation.


Subject(s)
Microbiota , Soil , Ecosystem , Plant Leaves , Plants , Soil Microbiology
14.
Trends Ecol Evol ; 36(7): 651-661, 2021 07.
Article in English | MEDLINE | ID: mdl-33888322

ABSTRACT

Plant-soil feedback (PSF) and diversity-productivity relationships are important research fields to study drivers and consequences of changes in plant biodiversity. While studies suggest that positive plant diversity-productivity relationships can be explained by variation in PSF in diverse plant communities, key questions on their temporal relationships remain. Here, we discuss three processes that change PSF over time in diverse plant communities, and their effects on temporal dynamics of diversity-productivity relationships: spatial redistribution and changes in dominance of plant species; phenotypic shifts in plant traits; and dilution of soil pathogens and increase in soil mutualists. Disentangling these processes in plant diversity experiments will yield new insights into how plant diversity-productivity relationships change over time.


Subject(s)
Ecosystem , Soil , Biodiversity , Feedback , Plants
15.
ISME J ; 15(2): 618-621, 2021 02.
Article in English | MEDLINE | ID: mdl-33005005

ABSTRACT

Soil bacteria and fungi are key drivers of carbon released from soils to the atmosphere through decomposition of plant-derived organic carbon sources. This process has important consequences for the global climate. While global change factors, such as increased temperature, are known to affect bacterial- and fungal-mediated decomposition rates, the role of trophic interactions in affecting decomposition remains largely unknown. We designed synthetic microbial communities consisting of eight bacterial and eight fungal species and tested the influence of predation by a model protist, Physarum polycephalum, on litter breakdown at 17 and 21 °C. Protists increased CO2 release and litter mass loss by ~35% at 17 °C lower temperatures, while they only had minor effects on microbial-driven CO2 release and mass loss at 21 °C. We found species-specific differences in predator-prey interactions, which may affect microbial community composition and functioning and thus underlie the impact of protists on litter breakdown. Our findings suggest that microbial predation by fast-growing protists is of under-appreciated functional importance, as it affects decomposition and, as such, may influence global carbon dynamics. Our results indicate that we need to better understand the role of trophic interactions within the microbiome in controlling decomposition processes and carbon cycling.


Subject(s)
Carbon Cycle , Fungi , Animals , Carbon , Ecosystem , Soil , Soil Microbiology , Temperature
16.
Platelets ; 32(6): 821-827, 2021 Aug 18.
Article in English | MEDLINE | ID: mdl-32838616

ABSTRACT

Cardiovascular events occur most frequently in the early morning. Similarly, the release of reticulated platelets (RP) by megakaryocytes has a peak in the late night and early morning. Which aspirin regimen most effectively inhibits platelets during these critical hours is unknown. Hence, the primary objective of this trial was to assess platelet function and RP levels at 8.00 AM, in stable cardiovascular (CVD) patients, during three different aspirin regimens. In this open-label randomized cross-over study subjects were allocated to three sequential aspirin regimens: once-daily (OD) 80 mg morning; OD-evening, and twice-daily (BID) 40 mg. Platelet function was measured at 8.00 AM & 8.00 PM by serum Thromboxane B2 (sTxB2) levels, the Platelet Function Analyzer (PFA)-200® Closure Time (CT), Aspirin Reaction Units (ARU, VerifyNow®), and RP levels. In total, 22 patients were included. At 8.00 AM, sTxB2 levels were the lowest after OD-evening in comparison with OD-morning (p = <0.01), but not in comparison with BID. Furthermore, RP levels were similar at 8.00 AM, but statistically significantly reduced at 8.00 PM after OD-evening (p = .01) and BID (p = .02) in comparison with OD-morning. OD-evening aspirin intake results in higher levels of platelet inhibition during early morning hours and results in a reduction of RP levels in the evening. These findings may, if confirmed by larger studies, be relevant to large groups of patients taking aspirin to reduce cardiovascular risk.


Subject(s)
Aspirin/therapeutic use , Cardiovascular Diseases/blood , Cardiovascular Diseases/drug therapy , Platelet Aggregation/physiology , Platelet Count/methods , Aged , Aspirin/pharmacology , Cross-Over Studies , Female , Humans , Male , Time Factors
17.
PLoS One ; 15(9): e0237256, 2020.
Article in English | MEDLINE | ID: mdl-32915795

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) strongly affect ecosystem functioning. To understand and quantify the mechanisms of this control, knowledge about the relationship between the actual abundance and community composition of AMF in the soil and in plant roots is needed. We collected soil and root samples in a natural dune grassland to test whether, across a plant community, the abundance of AMF in host roots (measured as the total length of roots colonized) is related to soil AMF abundance (using the neutral lipid fatty acids (NLFA) 16:1ω5 as proxy). Next-generation sequencing was used to explore the role of community composition in abundance patterns. We found a strong positive relationship between the total length of roots colonized by AMF and the amount of NLFA 16:1ω5 in the soil. We provide the first field-based evidence of proportional biomass allocation between intra-and extraradical AMF mycelium, at ecosystem level. We suggest that this phenomenon is made possible by compensatory colonization strategies of individual fungal species. Finally, our findings open the possibility of using AMF total root colonization as a proxy for soil AMF abundances, aiding further exploration of the AMF impacts on ecosystems functioning.


Subject(s)
Ecosystem , Mycorrhizae/growth & development , Soil Microbiology
18.
Glob Chang Biol ; 26(4): 2060-2071, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32012421

ABSTRACT

Grasslands are subject to considerable alteration due to human activities globally, including widespread changes in populations and composition of large mammalian herbivores and elevated supply of nutrients. Grassland soils remain important reservoirs of carbon (C) and nitrogen (N). Herbivores may affect both C and N pools and these changes likely interact with increases in soil nutrient availability. Given the scale of grassland soil fluxes, such changes can have striking consequences for atmospheric C concentrations and the climate. Here, we use the Nutrient Network experiment to examine the responses of soil C and N pools to mammalian herbivore exclusion across 22 grasslands, under ambient and elevated nutrient availabilities (fertilized with NPK + micronutrients). We show that the impact of herbivore exclusion on soil C and N pools depends on fertilization. Under ambient nutrient conditions, we observed no effect of herbivore exclusion, but under elevated nutrient supply, pools are smaller upon herbivore exclusion. The highest mean soil C and N pools were found in grazed and fertilized plots. The decrease in soil C and N upon herbivore exclusion in combination with fertilization correlated with a decrease in aboveground plant biomass and microbial activity, indicating a reduced storage of organic matter and microbial residues as soil C and N. The response of soil C and N pools to herbivore exclusion was contingent on temperature - herbivores likely cause losses of C and N in colder sites and increases in warmer sites. Additionally, grasslands that contain mammalian herbivores have the potential to sequester more N under increased temperature variability and nutrient enrichment than ungrazed grasslands. Our study highlights the importance of conserving mammalian herbivore populations in grasslands worldwide. We need to incorporate local-scale herbivory, and its interaction with nutrient enrichment and climate, within global-scale models to better predict land-atmosphere interactions under future climate change.

19.
Front Microbiol ; 10: 505, 2019.
Article in English | MEDLINE | ID: mdl-30936858

ABSTRACT

Introduced exotic plant species that originate from other continents are known to alter soil microbial community composition and nutrient cycling. Plant species that expand range to higher latitudes and altitudes as a consequence of current climate warming might as well affect the composition and functioning of native soil communities in their new range. However, the functional consequences of plant origin have been poorly studied in the case of plant range shifts. Here, we determined rhizosphere bacterial communities of four intracontinental range-expanding plant species in comparison with their four congeneric natives grown in soils collected from underneath those plant species in the field and in soils that are novel to them. We show that, when controlling for both species relatedness and soil characteristics, range-expanding plant species in higher latitude ecosystems will influence soil bacterial community composition and nutrient cycling in a manner similar to congeneric related native species. Our results highlight the importance to include phylogenetically controlled comparisons to disentangle the effect of origin from the effect of contrasting plant traits in the context of exotic plant species.

20.
Funct Ecol ; 33(12): 2402-2416, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31894174

ABSTRACT

Current climate warming enables plant species and soil organisms to expand their range to higher latitudes and altitudes. At the same time, climate change increases the incidence of extreme weather events such as drought. While it is expected that plants and soil organisms originating from the south are better able to cope with drought, little is known about the consequences of their range shifts on soil functioning under drought events.Here, we test how range-expanding plant species and soil communities may influence soil functioning under drought. We performed a full-factorial outdoor mesocosm experiment with plant communities of range expanders or related natives, with soil inocula from the novel or the original range, with or without summer drought. We measured litter decomposition, carbon mineralization and enzyme activities, substrate-induced respiration and the relative abundance of soil saprophytic fungi immediately after drought and at 6 and 12 weeks after rewetting.Drought decreased all soil functions regardless of plant and soil origin except one; soil respiration was less reduced in soils of range-expanding plant communities, suggesting stronger resistance to drought. After rewetting, soil functioning responses depended on plant and soil origin. Soils of native plant communities with a history of drought had more litter mass loss and higher relative abundance of saprophytic fungi than soils without drought and soils of range expanders. Functions of soil from range expanders recovered in a more conservative manner than soils of natives, as litter mass loss did not exceed the control rates. At the end of the experiment, after rewetting, most soil functions in mesocosms with drought history did not differ anymore from the control.We conclude that functional consequences of range-expanding plants and soil biota may interact with effects of drought and that these effects are most prominent during the first weeks after rewetting of the soil. A free http://onlinelibrary.wiley.com/doi/10.1111/1365-2435.13453/suppinfo can be found within the Supporting Information of this article.

SELECTION OF CITATIONS
SEARCH DETAIL
...