Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO J ; 20(12): 3056-62, 2001 Jun 15.
Article in English | MEDLINE | ID: mdl-11406582

ABSTRACT

The Major Facilitator Superfamily lactose transport protein (LacS) undergoes reversible self-association in the detergent-solubilized state, and is present in the membrane as a dimer. We determined the functional unit for proton motive force (Deltap)-driven lactose uptake and lactose/methyl-beta-D-galactopyranoside equilibrium exchange in a proteoliposomal system in which a single cysteine mutant, LacS-C67, defective in Deltap-driven uptake, was co-reconstituted with fully functional cysteine-less protein, LacS-cl. From the quadratic relationship between the uptake activity and the ratio of LacS-C67/LacS-cl, we conclude that the dimeric state of LacS is required for Deltap-driven uptake. N-ethylmaleimide (NEM) treatment of proteoliposomes abolished the LacS-C67 exchange activity but left the LacS-cl unaffected. After NEM treatment, the exchange activity decreased linearly with increasing ratios of LacS-C67/LacS-cl, suggesting that the monomeric state of LacS is sufficient for this mode of transport. We propose that the two subunits of LacS are functionally coupled in the step associated with conformational reorientation of the empty binding site, a step unique for Deltap-driven uptake.


Subject(s)
Escherichia coli Proteins , Galactosides/metabolism , Membrane Transport Proteins/metabolism , Monosaccharide Transport Proteins , Symporters , Carbohydrate Metabolism , Dimerization , Membrane Transport Proteins/genetics , Mutagenesis, Site-Directed , Oligopeptides/metabolism
2.
J Mol Microbiol Biotechnol ; 3(3): 401-13, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11361071

ABSTRACT

The involvement of phosphoeno/pyruvate:sugar phosphotransferase (PTS) proteins, like HPr and IIA(Glc), in the regulation of carbohydrate utilization has been well established in Gram-negative and Gram-positive bacteria. The majority of the studies of PTS-mediated regulation have been concerned with the hierarchical control of carbohydrate utilization, which results in the preferential utilization of a particular carbohydrate from a mixture of substrates. The underlying mechanisms of PTS-mediated hierarchical control involve the inhibition of expression of other catabolic enzymes and transporters and/or the allosteric regulation of their activity, which prevents the transcriptional inducer to be formed or taken up into the cell. More recently, it has become clear that PTS components allow also the cell to tune the uptake rate(s) to the carbohydrate availability in the medium and the metabolic capacity of the cell. The different phosphorylated species of HPr play a central role in this autoregulatory control circuit, both at the gene and at the protein level. Our knowledge of hierarchical control and autoregulation of carbohydrate utilization in bacteria is discussed.


Subject(s)
Bacteria/metabolism , Carbohydrate Metabolism , Phosphoenolpyruvate Sugar Phosphotransferase System/metabolism , Bacteria/genetics , Gram-Negative Bacteria/metabolism , Gram-Positive Bacteria/metabolism , Homeostasis , Lactose/metabolism , Models, Biological , Operon , Transcription, Genetic
3.
J Biol Chem ; 275(31): 23834-40, 2000 Aug 04.
Article in English | MEDLINE | ID: mdl-10816556

ABSTRACT

The lactose transport protein (LacS) of Streptococcus thermophilus belongs to a family of transporters in which putative alpha-helices II and IV have been implicated in cation binding and the coupled transport of the substrate and the cation. Here, the analysis of site-directed mutants shows that a positive and negative charge at positions 64 and 71 in helix II are essential for transport, but not for lactose binding. The conservation of charge/side-chain properties is less critical for Glu-67 and Ile-70 in helix II, and Asp-133 and Lys-139 in helix IV, but these residues are important for the coupled transport of lactose together with a proton. The analysis of second-site suppressor mutants indicates an ion pair exists between helices II and IV, and thus a close approximation of these helices can be made. The second-site suppressor analysis also suggests ion pairing between helix II and the intracellular loops 6-7 and 10-11. Because the C-terminal region of the transmembrane domain, especially helix XI and loop 10-11, is important for substrate binding in this family of proteins, we propose that sugar and proton binding and translocation are performed by the joint action of these regions in the protein. Indeed, substrate protection of maleimide labeling of single cysteine mutants confirms that alpha-helices II and IV are directly interacting or at least conformationally involved in sugar binding and/or translocation. On the basis of new and published data, we reason that the helices II, IV, VII, X, and XI and the intracellular loops 6-7 and 10-11 are in close proximity and form the binding sites and/or the translocation pathway in the transporters of the galactosides-pentosides-hexuronides family.


Subject(s)
Escherichia coli Proteins , Lactose/metabolism , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/metabolism , Monosaccharide Transport Proteins , Streptococcus , Symporters , Amino Acid Sequence , Binding Sites , Biological Transport , Cysteine/genetics , Ethylmaleimide/pharmacology , Ligands , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Structure, Secondary , Protons , Sequence Homology, Amino Acid , Suppression, Genetic
4.
J Biol Chem ; 274(47): 33244-50, 1999 Nov 19.
Article in English | MEDLINE | ID: mdl-10559198

ABSTRACT

The lactose transport protein (LacS) of Streptococcus thermophilus catalyzes the uptake of lactose in an exchange reaction with intracellularly formed galactose. The interactions between the substrate and the cytoplasmic and extracellular binding site of LacS have been characterized by assaying binding and transport of a range of sugars in proteoliposomes, in which the purified protein was reconstituted with a unidirectional orientation. Specificity for galactoside binding is given by the spatial configuration of the C-2, C-3, C-4, and C-6 hydroxyl groups of the galactose moiety. Except for a C-4 methoxy substitution, replacement of the hydroxyl groups for bulkier groups is not tolerated at these positions. Large hydrophobic or hydrophilic substitutions on the galactose C-1 alpha or beta position did not impair transport. In fact, the hydrophobic groups increased the binding affinity but decreased transport rates compared with galactose. Binding and transport characteristics of deoxygalactosides from either side of the membrane showed that the cytoplasmic and extracellular binding site interact differently with galactose. Compared with galactose, the IC(50) values for 2-deoxy- and 6-deoxygalactose at the cytoplasmic binding site were increased 150- and 20-fold, respectively, whereas they were the same at the extracellular binding site. From these and other experiments, we conclude that the binding sites and translocation pathway of LacS are spacious along the C-1 to C-4 axis of the galactose moiety and are restricted along the C-2 to C-6 axis. The differences in affinity at the cytoplasmic and extracellular binding site ensure that the transport via LacS is highly asymmetrical for the two opposing directions of translocation.


Subject(s)
Escherichia coli Proteins , Membrane Transport Proteins/metabolism , Monosaccharide Transport Proteins , Streptococcus/metabolism , Symporters , Binding Sites , Biological Transport , Cytoplasm/metabolism , Galactose/metabolism , Lactose/metabolism , Proteolipids/metabolism
5.
Biochemistry ; 38(30): 9634-9, 1999 Jul 27.
Article in English | MEDLINE | ID: mdl-10423241

ABSTRACT

The lactose transport protein (LacS) from Streptococcus thermophilus bearing a single cysteine mutation, K373C, within the putative interhelix loop 10-11 has been overexpressed in native membranes. Cross-polarization magic-angle spinning nuclear magnetic resonance spectroscopy (NMR) could selectively distinguish binding of (13)C-labeled substrate to just 50-60 nmol of LacS(K373C) in the native fluid membranes. Nitroxide electron spin-label at the K373C location was essentially immobile on the time scale of both conventional electron spin resonance spectroscopy (ESR) (<10(-8)s) and saturation-transfer ESR (<10(-3)s), under the same conditions as used in the NMR studies. The presence of the nitroxide spin-label effectively obscured the high-resolution NMR signal from bound substrate, even though (13)C-labeled substrate was shown to be within the binding center of the protein. The interhelix loop 10-11 is concluded to be in reasonably close proximity to the substrate binding site(s) of LacS (<15 A), and the loop region is expected to penetrate between the transmembrane segments of the protein that are involved in the translocation process.


Subject(s)
Carrier Proteins/chemistry , Cyclic N-Oxides/metabolism , Escherichia coli Proteins , Membrane Transport Proteins/chemistry , Monosaccharide Transport Proteins , Spin Labels , Symporters , Amino Acid Sequence , Biological Transport/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Membrane/enzymology , Cysteine/genetics , Lysine/genetics , Maleimides/chemistry , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Nuclear Magnetic Resonance, Biomolecular/methods , Protein Binding/genetics , Streptococcus/enzymology , Substrate Specificity/genetics
6.
J Biol Chem ; 271(26): 15358-66, 1996 Jun 28.
Article in English | MEDLINE | ID: mdl-8662938

ABSTRACT

The lactose transport protein (LacS) of Streptococcus thermophilus was amplified to levels as high as 8 and 30% of total membrane protein in Escherichia coli and S. thermophilus, respectively. In both organisms the protein was functional and the expression levels were highest with the streptococcal lacS promoter. Also a LacS deletion mutant, lacking the carboxyl-terminal regulatory domain, could be amplified to levels >20% of membrane protein. Membranes from S. thermophilus proved to be superior in terms of efficient solubilization and ease and extent of purification of LacS; >95% of LacS was solubilized with relatively low concentrations of Triton X-100, n-octyl-beta-D-glucoside, n-dodecyl-beta-D-maltoside, or C12E8. The LacS protein carrying a poly-histidine tag was purified in large quantities (approximately 5 mg/liter of culture) and with a purity >98% in a two-step process involving nickel chelate affinity and anion exchange chromatography. The membrane reconstitution of LacS was studied systematically by stepwise solubilization of preformed liposomes, prepared from E. coli phospholipid and phosphatidylcholine, and protein incorporation at the different stages of liposome solubilization. The detergents were removed by adsorption onto polystyrene beads and H+-lactose symport and lactose counterflow were measured. Highest transport activities were obtained when Triton X-100 was used throughout the solubilization/purification procedure, whereas activity was lost irreversibly with n-octyl-beta-D-glucoside. For reconstitutions mediated by n-dodecyl-beta-D-maltoside, C12E8, and to a lesser extent Triton X-100, the highest transport activities were obtained when the liposomes were titrated with low amounts of detergent (onset of liposome solubilization). Importantly, under these conditions proteoliposomes were obtained in which LacS was reconstituted in an inside-out orientation, as suggested by the outside labeling of a single cysteine mutant with a membrane impermeable biotin-maleimide. The results are consistent with a mechanism of reconstitution in which the hydrophilic regions of LacS prevent a random insertion of the protein into the membrane. Consistent with the in vivo lactose/galactose exchange catalyzed by the LacS protein, the maximal rate of lactose counterflow was almost 2 orders of magnitude higher than that of H+-lactose symport.


Subject(s)
Escherichia coli Proteins , Lactose/metabolism , Membrane Transport Proteins/metabolism , Monosaccharide Transport Proteins , Streptococcus/metabolism , Symporters , Amino Acid Sequence , Base Sequence , Biological Transport , Cell-Free System , Detergents , Kinetics , Liposomes , Membrane Proteins/metabolism , Membrane Transport Proteins/chemistry , Membranes, Artificial , Molecular Sequence Data , Oligodeoxyribonucleotides/chemistry , Recombinant Proteins , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...