Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 62(34): e202307381, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37384373

ABSTRACT

The high demand for light-emitting and display devices made luminescent organic materials as attractive candidates. Solvent-free organic liquids are one of the promising emitters among them due to the salient features. However, the inherent limitations of forming sticky and noncurable surfaces must be addressed to become an alternate emitter for large-area device applications. Herein, we functionalized solvent-free organic liquids having monomeric emission in bulk with polymerizable groups to improve the processability. The polymerizable group on carbazole, naphthalene monoimide, and diketopyrrolopyrrole-based solvent-free liquid emitters enabled on-surface polymerization. These emitters alone and in combinations can be directly coated on a glass substrate without the help of solvents. Subsequent photo or thermal polymerization leads to stable, non-sticky, flexible, foldable, and free-standing large-area films with reasonably high quantum yield. Our demonstration of the tunable and white light-emitting films using polymerizable solvent-free liquids might be a potential candidate in flexible/foldable/stretchable electronics. The new concept of polymerizable liquid can be extended to other functional features suitable for futuristic applications.

2.
J Am Chem Soc ; 141(38): 14950-14954, 2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31510740

ABSTRACT

Proton-exchange membrane fuel cells are promising energy devices for a sustainable future due to green features, high power density, and mild operating conditions. A facile proton-conducting membrane plays a pivotal role to boost the efficiency of fuel cells, and hence focused research in this area is highly desirable. Major issues associated with the successful example of Nafion resulted in the search for alternate proton conducting materials. Even though proton carrier loaded crystalline porous organic frameworks have been used for proton-conduction, the weak host-guest interactions limited their practical use. Herein, we developed a crystalline 2D-polymer composed of benzimidazole units as the integral part, prepared by the condensation of aryl acid and diamine in polyphosphoric acid medium. The imidazole linked-2D-polymer exhibits ultrahigh proton conductivity (3.2 × 10-2 S cm-1) (at 95% relative humidity and 95 °C) in the pristine state, which is highest among the undoped porous organic frameworks so far reported. The present strategy of a crystalline proton-conducting 2D-polymer will lead to the development of new high performing crystalline solid proton conductor.

SELECTION OF CITATIONS
SEARCH DETAIL
...