Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Vis Comput Graph ; 28(1): 378-388, 2022 01.
Article in English | MEDLINE | ID: mdl-34596543

ABSTRACT

Machine learning (ML) is increasingly applied to Electronic Health Records (EHRs) to solve clinical prediction tasks. Although many ML models perform promisingly, issues with model transparency and interpretability limit their adoption in clinical practice. Directly using existing explainable ML techniques in clinical settings can be challenging. Through literature surveys and collaborations with six clinicians with an average of 17 years of clinical experience, we identified three key challenges, including clinicians' unfamiliarity with ML features, lack of contextual information, and the need for cohort-level evidence. Following an iterative design process, we further designed and developed VBridge, a visual analytics tool that seamlessly incorporates ML explanations into clinicians' decision-making workflow. The system includes a novel hierarchical display of contribution-based feature explanations and enriched interactions that connect the dots between ML features, explanations, and data. We demonstrated the effectiveness of VBridge through two case studies and expert interviews with four clinicians, showing that visually associating model explanations with patients' situational records can help clinicians better interpret and use model predictions when making clinician decisions. We further derived a list of design implications for developing future explainable ML tools to support clinical decision-making.


Subject(s)
Computer Graphics , Electronic Health Records , Cohort Studies , Delivery of Health Care , Humans , Machine Learning
2.
IEEE Trans Vis Comput Graph ; 28(1): 1161-1171, 2022 01.
Article in English | MEDLINE | ID: mdl-34587081

ABSTRACT

Machine learning (ML) is being applied to a diverse and ever-growing set of domains. In many cases, domain experts - who often have no expertise in ML or data science - are asked to use ML predictions to make high-stakes decisions. Multiple ML usability challenges can appear as result, such as lack of user trust in the model, inability to reconcile human-ML disagreement, and ethical concerns about oversimplification of complex problems to a single algorithm output. In this paper, we investigate the ML usability challenges that present in the domain of child welfare screening through a series of collaborations with child welfare screeners. Following the iterative design process between the ML scientists, visualization researchers, and domain experts (child screeners), we first identified four key ML challenges and honed in on one promising explainable ML technique to address them (local factor contributions). Then we implemented and evaluated our visual analytics tool, Sibyl, to increase the interpretability and interactivity of local factor contributions. The effectiveness of our tool is demonstrated by two formal user studies with 12 non-expert participants and 13 expert participants respectively. Valuable feedback was collected, from which we composed a list of design implications as a useful guideline for researchers who aim to develop an interpretable and interactive visualization tool for ML prediction models deployed for child welfare screeners and other similar domain experts.

SELECTION OF CITATIONS
SEARCH DETAIL
...