Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biomolecules ; 14(4)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38672510

ABSTRACT

Histone deacetylase (HDAC) 9 is a negative regulator of adipogenic differentiation, which is required for maintenance of healthy adipose tissues. We reported that HDAC9 expression is upregulated in adipose tissues during obesity, in conjunction with impaired adipogenic differentiation, adipocyte hypertrophy, insulin resistance, and hepatic steatosis, all of which were alleviated by global genetic deletion of Hdac9. Here, we developed a novel transgenic (TG) mouse model to test whether overexpression of Hdac9 is sufficient to induce adipocyte hypertrophy, insulin resistance, and hepatic steatosis in the absence of obesity. HDAC9 TG mice gained less body weight than wild-type (WT) mice when fed a standard laboratory diet for up to 40 weeks, which was attributed to reduced fat mass (primarily inguinal adipose tissue). There was no difference in insulin sensitivity or glucose tolerance in 18-week-old WT and HDAC9 TG mice; however, at 40 weeks of age, HDAC9 TG mice exhibited impaired insulin sensitivity and glucose intolerance. Tissue histology demonstrated adipocyte hypertrophy, along with reduced numbers of mature adipocytes and stromovascular cells, in the HDAC9 TG mouse adipose tissue. Moreover, increased lipids were detected in the livers of aging HDAC9 TG mice, as evaluated by oil red O staining. In conclusion, the experimental aging HDAC9 TG mice developed adipocyte hypertrophy, insulin resistance, and hepatic steatosis, independent of obesity. This novel mouse model may be useful in the investigation of the impact of Hdac9 overexpression associated with metabolic and aging-related diseases.


Subject(s)
Adipocytes , Fatty Liver , Histone Deacetylases , Insulin Resistance , Animals , Mice , Adipocytes/metabolism , Adipocytes/pathology , Aging/genetics , Aging/metabolism , Fatty Liver/genetics , Fatty Liver/metabolism , Fatty Liver/pathology , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Hypertrophy/genetics , Hypertrophy/metabolism , Insulin Resistance/genetics , Mice, Transgenic , Repressor Proteins/genetics , Repressor Proteins/metabolism
2.
Obesity (Silver Spring) ; 32(1): 107-119, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37869960

ABSTRACT

OBJECTIVE: Impaired adipogenic differentiation exacerbates metabolic disease in obesity. This study reported that high-fat diet (HFD)-fed mice housed at thermoneutrality exhibited impaired adipogenic differentiation, attributed to increased expression of histone deacetylase 9 (HDAC9). However, the impact of HFD on adipogenic differentiation is reportedly variable, possibly reflecting divergent environmental conditions such as housing temperature. METHODS: C57BL/6J (wild-type [WT]) mice were housed at either thermoneutral (28-30°C) or ambient (20-22°C) temperature and fed HFD or chow diet (CD) for 12 weeks. For acute exposure experiments, WT or transient receptor potential cation channel subfamily M member 8 (TRPM8) knockout mice housed under thermoneutrality were acutely exposed to ambient temperature for 6 to 24 h. RESULTS: WT mice fed HFD and housed at thermoneutrality, compared with ambient temperature, gained more weight despite reduced food intake. They likewise exhibited increased inguinal adipose tissue HDAC9 expression and reduced adipogenic differentiation in vitro and in vivo compared with CD-fed mice. Conversely, HFD-fed mice housed at ambient temperature exhibited minimal change in adipose HDAC9 expression or adipogenic differentiation. Acute exposure of WT mice to ambient temperature reduced adipose HDAC9 expression independent of sympathetic ß-adrenergic signaling via a TRPM8-dependent mechanism. CONCLUSIONS: Adipose HDAC9 expression is temperature sensitive, regulating adipogenic differentiation in HFD-fed mice housed under thermoneutrality.


Subject(s)
Adipose Tissue , Housing , Animals , Mice , Adipose Tissue/metabolism , Diet, High-Fat , Histone Deacetylases/genetics , Mice, Inbred C57BL , Mice, Knockout , Obesity/genetics , Obesity/metabolism , Temperature
3.
bioRxiv ; 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38014255

ABSTRACT

Introduction: Human saphenous veins (SV) are widely used as grafts in coronary artery bypass (CABG) surgery but often fail due to neointima proliferation (NP). NP involves complex interplay between vascular smooth muscle cells (VSMC) and fibroblasts. Little is known, however, regarding the transcriptomic and proteomic dynamics of NP. Here, we performed multi-omics analysis in an ex vivo tissue culture model of NP in human SV procured for CABG surgery. Methods and results: Histological examination demonstrated significant elastin degradation and NP (indicated by increased neointima area and neointima/media ratio) in SV subjected to tissue culture. Analysis of data from 73 patients suggest that the process of SV adaptation and NP may differ according to sex and body mass index. RNA sequencing confirmed upregulation of pro-inflammatory and proliferation-related genes during NP and identified novel processes, including increased cellular stress and DNA damage responses, which may reflect tissue trauma associated with SV harvesting. Proteomic analysis identified upregulated extracellular matrix-related and coagulation/thrombosis proteins and downregulated metabolic proteins. Spatial transcriptomics detected transdifferentiating VSMC in the intima on the day of harvesting and highlighted dynamic alterations in fibroblast and VSMC phenotype and behavior during NP. Specifically, we identified new cell subpopulations contributing to NP, including SPP1 + , LGALS3 + VSMC and MMP2 + , MMP14 + fibroblasts. Conclusion: Dynamic alterations of gene and protein expression occur during NP in human SV. Identification of the human-specific molecular and cellular mechanisms may provide novel insight into SV bypass graft disease.

4.
bioRxiv ; 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37503031

ABSTRACT

Introduction: Inflammation is a key pathogenic feature of abdominal aortic aneurysm (AAA). Soluble epoxide hydrolase (sEH) is a pro-inflammatory enzyme that converts cytochrome P450-derived epoxides of fatty acids to the corresponding diols, and pharmacological inhibition of sEH prevented AAA formation. Both cytochrome P450 enzymes and sEH are highly expressed in the liver. Here, we investigated the role of hepatic sEH in AAA using a selective pharmacological inhibitor of sEH and hepatocyte-specific Ephx2 (which encodes sEH gene) knockout (KO) mice in two models of AAA [angiotensin II (AngII) infusion and calcium chloride (CaCl 2 ) application]. Methods and results: sEH expression and activity were strikingly higher in mouse liver compared with aorta and further increased the context of AAA, in conjunction with elevated expression of the transcription factor Sp1 and the epigenetic regulator Jarid1b, which have been reported to positively regulate sEH expression. Pharmacological sEH inhibition, or liver-specific sEH disruption, achieved by crossing sEH floxed mice with albumin-cre mice, prevented AAA formation in both models, concomitant with reduced expression of hepatic sEH as well as complement factor 3 (C3) and serum amyloid A (SAA), liver-derived factors linked to AAA formation. Moreover, sEH antagonism markedly reduced C3 and SAA protein accumulation in the aortic wall. Co-incubation of liver ex vivo with aneurysm-prone aorta resulted in induction of sEH in the liver, concomitant with upregulation of Sp1, Jarid1b, C3 and SAA gene expression, suggesting that the aneurysm-prone aorta secretes factors that activate sEH and downstream inflammatory signaling in the liver. Using an unbiased proteomic approach, we identified a number of dysregulated proteins [ e.g., plastin-2, galectin-3 (gal-3), cathepsin S] released by aneurysm-prone aorta as potential candidate mediators of hepatic sEH induction. Conclusion: We provide the first direct evidence of the liver's role in orchestrating AAA via the enzyme sEH. These findings not only provide novel insight into AAA pathogenesis, but they have potentially important implications with regard to developing effective medical therapies for AAA.

5.
Cells ; 11(17)2022 08 30.
Article in English | MEDLINE | ID: mdl-36078104

ABSTRACT

Obesity is a major risk factor for both metabolic and cardiovascular disease. We reported that, in obese male mice, histone deacetylase 9 (HDAC9) is upregulated in adipose tissues, and global deletion of HDAC9 protected against high fat diet (HFD)-induced obesity and metabolic disease. Here, we investigated the impact of adipocyte-specific HDAC9 gene deletion on diet-induced obesity in male and female mice. The HDAC9 gene expression was increased in adipose tissues of obese male and female mice and HDAC9 expression correlated positively with body mass index in humans. Interestingly, female, but not male, adipocyte-specific HDAC9 KO mice on HFD exhibited reduced body weight and visceral adipose tissue mass, adipocyte hypertrophy, and improved insulin sensitivity, glucose tolerance and adipogenic differentiation gene expression. Furthermore, adipocyte-specific HDAC9 gene deletion in female mice improved metabolic health as assessed by whole body energy expenditure, oxygen consumption, and adaptive thermogenesis. Mechanistically, compared to female mice, HFD-fed male mice exhibited preferential HDAC9 expression in the stromovascular fraction, which may have offset the impact of adipocyte-specific HDAC9 gene deletion in male mice. These results suggest that HDAC9 expressed in adipocytes is detrimental to obesity in female mice and provides novel evidence of sex-related differences in HDAC9 cellular expression and contribution to obesity-related metabolic disease.


Subject(s)
Histone Deacetylases , Metabolic Diseases , Obesity , Adipose Tissue/metabolism , Animals , Diet, High-Fat/adverse effects , Female , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Humans , Metabolic Diseases/genetics , Metabolic Diseases/metabolism , Mice , Mice, Obese , Obesity/genetics , Obesity/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...