Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 61(17): 5315-5319, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-36256216

ABSTRACT

We derive analytical expressions for the length, thickness, and curvature of an Airy light sheet in terms of basic parameters of the cubic phase and the paraxially defined focusing optics that form the beam. The length and thickness are defined analogously to the Rayleigh range and beam waist of a Gaussian beam, hence providing a direct and quantitative comparison between the two beam types. The analytical results are confirmed via numerical Fresnel propagation simulations and discussed within the context of light-sheet microscopy, providing a comprehensive guide for the design of the illumination unit.

2.
Opt Express ; 29(8): 11819-11832, 2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33984955

ABSTRACT

We present the use of the Douglas-Gunn Alternating Direction Implicit finite difference method for computationally efficient simulation of the electric field propagation through a wide variety of optical fiber geometries. The method can accommodate refractive index profiles of arbitrary shape and is implemented in a tool called BPM-Matlab. We validate BPM-Matlab by comparing it to published experimental, numerical, and theoretical data and to commercially available state-of-the-art software. It is user-friendly, fast, and is available open-source. BPM-Matlab has a broad scope of applications in modeling a variety of optical fibers for diverse fields such as imaging, communication, material processing, and remote sensing.

3.
Sci Rep ; 10(1): 8090, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32415135

ABSTRACT

Attenuation of optical fields owing to scattering and absorption limits the penetration depth for imaging. Whilst aberration correction may be used, this is difficult to implement over a large field-of-view in heterogeneous tissue. Attenuation-compensation allows tailoring of the maximum lobe of a propagation-invariant light field and promises an increase in depth penetration for imaging. Here we show this promising approach may be implemented in multi-photon (two-photon) light-sheet fluorescence microscopy and, furthermore, can be achieved in a facile manner utilizing a graded neutral density filter, circumventing the need for complex beam shaping apparatus. A "gold standard" system utilizing a spatial light modulator for beam shaping is used to benchmark our implementation. The approach will open up enhanced depth penetration in light-sheet imaging to a wide range of end users.

SELECTION OF CITATIONS
SEARCH DETAIL
...