Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Appl Physiol (1985) ; 77(2): 789-94, 1994 Aug.
Article in English | MEDLINE | ID: mdl-8002529

ABSTRACT

We examined the extent to which training-related increases of inspiratory muscle (IM) strength are limited to the lung volume (VL) at which the training occurs. IM strength training consisted of performing repeated static maximum inspiratory maneuvers. Three groups of normal volunteers performed these maneuvers at one of three lung volumes: residual volume (RV), relaxation volume (Vrel), or Vrel plus one-half of inspiratory capacity (Vrel + 1/2IC). A control group did not train. We constructed maximal inspiratory pressure-VL curves before and after a 6-wk training period. For each group, we found that the greatest improvements in strength occurred at the volume at which the subjects trained and were significantly greater for those who trained at low (36% for RV and 26% for Vrel) than at high volumes (13% for Vrel + 1/2IC). Smaller increments in strength were noted at volumes adjacent to the training volume. The range of vital capacity (VC) over which strength was increased was greater for those who trained at low (70% of VC) than at high VL (20% of VC). We conclude that the greatest improvements in IM strength are specific to the VL at which training occurs. However, the increase in strength, as well as the range of volume over which strength is increased, is greater for those who trained at the lower VL.


Subject(s)
Lung/physiology , Physical Education and Training , Respiratory Muscles/physiology , Adult , Aging/physiology , Exercise/physiology , Humans , Lung/anatomy & histology , Plethysmography , Total Lung Capacity , Vital Capacity
2.
J Appl Physiol (1985) ; 77(2): 795-801, 1994 Aug.
Article in English | MEDLINE | ID: mdl-8002530

ABSTRACT

The inspiratory muscles (IM) can be trained by having a subject breathe through inspiratory resistive loads or by use of unloaded hyperpnea. These disparate training protocols are characterized by high inspiratory pressure (force) or high inspiratory flow (velocity), respectively. We tested the hypothesis that the posttraining improvements in IM pressure or flow performance are specific to training protocols in a way that is similar to force-velocity specificity of skeletal muscle training. IM training was accomplished in 15 normal subjects by use of three protocols: high inspiratory pressure-no flow (group A, n = 5), low inspiratory pressure-high flow (group B, n = 5), and intermediate inspiratory pressure and flow (group C, n = 5). A control group (n = 4) did no training. Before and after training, we measured esophageal pressure (Pes) and inspiratory flow (VI) during single maximal inspiratory efforts against a range of external resistances including an occluded airway. Efforts originated below relaxation volume (Vrel), and peak Pes and VI were measured at Vrel. Isovolume maximal Pes-VI plots were constructed to assess maximal inspiratory pressure-flow performance. Group A (pressure training) performed 30 maximal static inspiratory maneuvers at Vrel daily, group B (flow training) performed 30 sets of three maximal inspiratory maneuvers with no added external resistance daily, and group C (intermediate training) performed 30 maximal inspiratory efforts on a midrange external resistance (7 mm ID) daily. Subjects trained 5 days/wk for 6 wk. Data analysis included comparison of posttraining Pes-VI slopes among training groups.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Air Pressure , Physical Education and Training , Respiratory Muscles/physiology , Adult , Airway Resistance/physiology , Esophagus/physiology , Humans , Muscle Relaxation/physiology , Pulmonary Ventilation/physiology , Respiratory Mechanics/physiology
SELECTION OF CITATIONS
SEARCH DETAIL