Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Biomimetics (Basel) ; 9(2)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38392128

ABSTRACT

Population-based metaheuristics can be seen as a set of agents that smartly explore the space of solutions of a given optimization problem. These agents are commonly governed by movement operators that decide how the exploration is driven. Although metaheuristics have successfully been used for more than 20 years, performing rapid and high-quality parameter control is still a main concern. For instance, deciding the proper population size yielding a good balance between quality of results and computing time is constantly a hard task, even more so in the presence of an unexplored optimization problem. In this paper, we propose a self-adaptive strategy based on the on-line population balance, which aims for improvements in the performance and search process on population-based algorithms. The design behind the proposed approach relies on three different components. Firstly, an optimization-based component which defines all metaheuristic tasks related to carry out the resolution of the optimization problems. Secondly, a learning-based component focused on transforming dynamic data into knowledge in order to influence the search in the solution space. Thirdly, a probabilistic-based selector component is designed to dynamically adjust the population. We illustrate an extensive experimental process on large instance sets from three well-known discrete optimization problems: Manufacturing Cell Design Problem, Set covering Problem, and Multidimensional Knapsack Problem. The proposed approach is able to compete against classic, autonomous, as well as IRace-tuned metaheuristics, yielding interesting results and potential future work regarding dynamically adjusting the number of solutions interacting on different times within the search process.

2.
Diagnostics (Basel) ; 14(4)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38396492

ABSTRACT

In recent years, there has been growing interest in the use of computer-assisted technology for early detection of skin cancer through the analysis of dermatoscopic images. However, the accuracy illustrated behind the state-of-the-art approaches depends on several factors, such as the quality of the images and the interpretation of the results by medical experts. This systematic review aims to critically assess the efficacy and challenges of this research field in order to explain the usability and limitations and highlight potential future lines of work for the scientific and clinical community. In this study, the analysis was carried out over 45 contemporary studies extracted from databases such as Web of Science and Scopus. Several computer vision techniques related to image and video processing for early skin cancer diagnosis were identified. In this context, the focus behind the process included the algorithms employed, result accuracy, and validation metrics. Thus, the results yielded significant advancements in cancer detection using deep learning and machine learning algorithms. Lastly, this review establishes a foundation for future research, highlighting potential contributions and opportunities to improve the effectiveness of skin cancer detection through machine learning.

SELECTION OF CITATIONS
SEARCH DETAIL