Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Emerg Infect Dis ; 29(4): 679-685, 2023 04.
Article in English | MEDLINE | ID: mdl-36958029

ABSTRACT

Antimicrobial resistance is a major threat to human health. Since the 2000s, computational tools for predicting infectious diseases have been greatly advanced; however, efforts to develop real-time forecasting models for antimicrobial-resistant organisms (AMROs) have been absent. In this perspective, we discuss the utility of AMRO forecasting at different scales, highlight the challenges in this field, and suggest future research priorities. We also discuss challenges in scientific understanding, access to high-quality data, model calibration, and implementation and evaluation of forecasting models. We further highlight the need to initiate research on AMRO forecasting using currently available data and resources to galvanize the research community and address initial practical questions.


Subject(s)
Anti-Bacterial Agents , Communicable Diseases , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial , Forecasting , Data Accuracy
2.
Res Sq ; 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35923312

ABSTRACT

Understanding SARS-CoV-2 transmission within and among communities is critical for tailoring public health policies to local context. However, analysis of community transmission is challenging due to a lack of high-resolution surveillance and testing data. Here, using contact tracing records for 644,029 cases and their contacts in New York City during the second pandemic wave, we provide a detailed characterization of the operational performance of contact tracing and reconstruct exposure and transmission networks at individual and ZIP code scales. We find considerable heterogeneity in reported close contacts and secondary infections and evidence of extensive transmission across ZIP code areas. Our analysis reveals the spatial pattern of SARS-CoV-2 spread and communities that are tightly interconnected by exposure and transmission. We find that higher vaccination coverage and reduced numbers of visitors to points-of-interest are associated with fewer within- and cross-ZIP code transmission events, highlighting potential measures for curtailing SARS-CoV-2 spread in urban settings.

SELECTION OF CITATIONS
SEARCH DETAIL
...