Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 11(11): 6233-6247, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34141214

ABSTRACT

Global warming affects breeding phenology of birds differentially with latitude, but there is contrasting evidence about how the changing climate influences the breeding of migrating songbirds at their northern breeding range. We investigate the effect of climate warming on breeding time and breeding success of European pied flycatchers Ficedula hypoleuca in Sweden during a period of 36 years using nest reports from bird ringing. To account for the latitudinal variation, we divided Sweden into three latitudinal bands (northern, intermediate, and southern). We applied a sliding window approach to find the most influential period and environment characteristics (temperature, vegetation greenness, and precipitation), using linear mixed models and model averaging. Our results show a long-term advancement of breeding time related to increasing spring temperature and vegetation greenness during a period before hatching. Northern breeders revealed a larger advancement over the years (8.3 days) compared with southern breeders (3.6 days). We observed a relatively stronger effect of temperature and greenness on breeding time in the north. Furthermore, northern birds showed an increase in breeding success over time, while birds breeding at southern and intermediate latitudes showed reduced breeding success in years with higher prehatching temperatures. Our findings with stronger environment effects on breeding time advancement in the north suggest that pied flycatchers are more responsive to weather cues at higher latitudes. Breeding time adjustment and, potentially, low competition help explain the higher long-term success observed in the north. Reduced breeding success at more southerly latitudes suggests an inability to match breeding time to very early and warm springs, a fate that with continued climate change could also be expected for pied flycatchers and other long-distance migrants at their very northern breeding range.

2.
Sci Rep ; 10(1): 7698, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32382101

ABSTRACT

Common cuckoos Cuculus canorus are obligate nest parasites yet young birds reach their distant, species-specific wintering grounds without being able to rely on guidance from experienced conspecifics - in fact they never meet their parents. Naïve marine animals use an inherited navigational map during migration but in inexperienced terrestrial animal migrants unequivocal evidence of navigation is lacking. We present satellite tracking data on common cuckoos experimentally displaced 1,800 km eastward from Rybachy to Kazan. After displacement, both young and adult travelled similarly towards the route of non-displaced control birds. The tracking data demonstrate the potential for young common cuckoos to return to the species-specific migration route after displacement, a response so far reported exclusively in experienced birds. Our results indicate that an inherited map allows first-time migrating cuckoos to locate suitable wintering grounds. This is in contrast to previous studies of solitary terrestrial bird migrants but similar to that reported from the marine environment.


Subject(s)
Animal Migration/physiology , Birds/physiology , Wings, Animal/physiology , Animals , Orientation/physiology , Seasons
3.
Sci Adv ; 3(1): e1601360, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28070557

ABSTRACT

Migratory birds track seasonal resources across and between continents. We propose a general strategy of tracking the broad seasonal abundance of resources throughout the annual cycle in the longest-distance migrating land birds as an alternative to tracking a certain climatic niche or shorter-term resource surplus occurring, for example, during spring foliation. Whether and how this is possible for complex annual spatiotemporal schedules is not known. New tracking technology enables unprecedented spatial and temporal mapping of long-distance movement of birds. We show that three Palearctic-African species track vegetation greenness throughout their annual cycle, adjusting the timing and direction of migratory movements with seasonal changes in resource availability over Europe and Africa. Common cuckoos maximize the vegetation greenness, whereas red-backed shrikes and thrush nightingales track seasonal surplus in greenness. Our results demonstrate that the longest-distance migrants move between consecutive staging areas even within the wintering region in Africa to match seasonal variation in regional climate. End-of-century climate projections indicate that optimizing greenness would be possible but that vegetation surplus might be more difficult to track in the future.


Subject(s)
Animal Migration/physiology , Birds/physiology , Climate Change , Seasons , Africa , Animals , Europe
4.
PLoS One ; 11(12): e0168940, 2016.
Article in English | MEDLINE | ID: mdl-28005960

ABSTRACT

Being an obligate parasite, juvenile common cuckoos Cuculus canorus are thought to reach their African wintering grounds from Palearctic breeding grounds without guidance from experienced conspecifics but this has not been documented. We used satellite tracking to study naïve migrating common cuckoos. Juvenile cuckoos left breeding sites in Finland moving slowly and less consistently directed than adult cuckoos. Migration of the juveniles (N = 5) was initiated later than adults (N = 20), was directed toward the southwest-significantly different from the initial southeast direction of adults-and included strikingly long Baltic Sea crossings (N = 3). After initial migration of juvenile cuckoos toward Poland, the migration direction changed and proceeded due south, directly toward the winter grounds, as revealed by a single tag transmitting until arrival in Northwest Angola where northern adult cuckoos regularly winter. Compared to adults, the juvenile travelled straighter and faster, potentially correcting for wind drift along the route. That both migration route and timing differed from adults indicates that juvenile cuckoos are able to reach proper wintering grounds independently, guided only by their innate migration programme.


Subject(s)
Animal Migration , Birds/physiology , Satellite Communications , Angola , Animals , Birds/growth & development , Finland , Sexual Maturation , Time Factors , Wind
SELECTION OF CITATIONS
SEARCH DETAIL
...