Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Hepatología ; 5(2): 123-136, mayo-ago. 2024. fig, tab
Article in Spanish | LILACS, COLNAL | ID: biblio-1556168

ABSTRACT

Desde los años ochenta se ha explorado el tratamiento para el virus de la hepatitis C, aunque en ese entonces los medicamentos disponibles eran poco toleradas y poco eficaces. En el 2011, la introducción de antivirales de acción directa transformó significativamente el curso de la enfermedad, logrando tasas de curación superiores al 90 % en los pacientes. Este avance ha permitido prevenir complicaciones futuras con efectos adversos mínimos. La presente revisión aborda la línea de tiempo del descubrimiento de los antivirales, su mecanismo de acción, sus indicaciones y potencial impacto en la salud pública.


Since the 1980s, the treatment of hepatitis C has been explored, although at that time, the available medications were poorly tolerated and ineffective. In 2011, the introduction of direct-acting antivirals significantly transformed the course of the disease, achieving cure rates of over 90% in patients. This advance has made it possible to prevent future complications with minimal adverse effects. This review addresses the timeline of the discovery of antivirals, their mechanism of action, and their impact on medicine.

2.
J Environ Manage ; 355: 120350, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38422846

ABSTRACT

The difficulty of the microbial conversion process for the degradation of sotol vinasse due to its high acidity and organic load makes it an effluent with high potential for environmental contamination, therefore its treatment is of special interest. Calcium carbonate is found in great abundance and has the ability to act as a neutralizing agent, maintaining the alkalinity of the fermentation medium as well as, through its dissociation, releasing CO2 molecules that can be used by phototrophic CO2-fixing bacteria. This study evaluated the use of Rhodopseudomonas telluris (OR069658) for the degradation of vinasse in different concentrations of calcium carbonate (0, 2, 4, 6, 8 and 10% m/v). The results showed that calcium carbonate concentration influenced volatile fatty acids (VFA), alkalinity and pH, which in turn influenced changes in the degradation of chemical oxygen demand (COD), phenol and sulfate. Maximum COD and phenol degradation values of 83.16 ± 0.15% and 90.16 ± 0.30%, respectively, were obtained at a calcium carbonate concentration of 4%. At the same time, the lowest COD and phenol degradation values of 52.01 ± 0.38% and 68.21 ± 0.81%, respectively, were obtained at a calcium carbonate concentration of 0%. The data obtained also revealed to us that at high calcium carbonate concentrations of 6-10%, sotol vinasse can be biosynthesized by Rhodopseudomonas telluris (OR069658) to VFA, facilitating the degradation of sulfates. The findings of this study confirmed the potential for using Rhodopseudomonas telluris (OR069658) at a calcium carbonate concentration of 4% as an appropriate alternative treatment for sotol vinasse degradation.


Subject(s)
Carbon , Rhodopseudomonas , Waste Disposal, Fluid , Waste Disposal, Fluid/methods , Carbon Dioxide , Industrial Waste/analysis , Calcium Carbonate , Phenols , Bioreactors
3.
Biol Trace Elem Res ; 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37922070

ABSTRACT

High fluoride exposures can lead to adverse effects such as dental and bone fluorosis, as well as endocrine and cognitive developmental problems. Water is the main dietary source of this ion, although significant concentrations have also been detected in other beverages widely consumed by the population such as soft drinks. A total of 200 soft drink samples (60 flavoured, 70 extracts, 60 fruit juice and 10 soft drinks) were analysed by fluoride ion selective potentiometry. A consumption of 330 mL was estimated for exposure assessment and subsequent F-risk assessment by soft drink consumption. The highest average concentration was found in extract soft drinks (2.45 ± 1.15 mg/L), followed by flavoured (1.71 ± 2.29 mg/L) and carbonated soft drinks (1.38 ± 0.40 mg/L), while the lowest was found in fruit juice soft drinks (1.09 ± 0.62 mg/L). The flavours with the highest concentration were tea-melon and tea-passion fruit with 3.66 ± 0.40 and 3.17 ± 0.56 mg/L respectively and the lowest was lemon flavour with 0.69 mg/L. The contribution of these beverages, considering the UL (Upper level) reference values set by EFSA (European Food Safety Authority) are between 3.28-41.78%, depending on age group and sex.

4.
Foods ; 12(11)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37297488

ABSTRACT

Sports nutrition supplementation is a widespread practice. Whey protein supplements contribute not only to protein intake but also to dietary exposure to minerals. The labelling present provides the percentage of protein and rarely refers to other components, such as potentially toxic elements such as B, Cu, Mo, Zn, and V that present tolerable upper intake levels set by the European Food Safety Authority. The percentage of protein declared on supplement labelling was checked using the Kjeldahl method, and the levels of Ca, Mg, K, Na, Ba, B, Co, Cu, Cr, Sr, Fe, Li, Mn, Mo, Ni, V, Zn, and Al were analyzed by ICP-OES with the aim of characterizing the protein and mineral contents of isolate and concentrate whey protein supplements representative of the European market. The protein content was 70.9% (18-92.3%) and statistically significant differences were observed between the declared and real protein percentages. Among the minerals, K (4689.10 mg/kg) and Ca (3811.27 mg/kg) presented the highest levels, whereas Co (0.07 mg/kg) and V (0.04 mg/kg) showed the lowest levels. It was concluded that the quality and safety of these products needs to be monitored and regulated. A high degree of non-compliance with labelling claims was detected. Furthermore, the contributions to the recommended and tolerable intakes among regular consumers need to be assessed.

5.
Foods ; 12(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36832820

ABSTRACT

The Canary Islands, located in the Atlantic Ocean, are an archipelago of volcanic origin which, for decades, has been affected by natural fluoride contamination in the water supply of some of its islands, mainly the island of Tenerife. In addition, recent volcanic eruptions in the archipelago and the increased demand for water supply have led to an increase in the fluoride content in other areas which, historically, were not affected. Fluoride content was determined in 274 water supply samples from the most populated islands of the Canary Islands (Tenerife and Gran Canaria) collected during the months of June 2021 to May 2022. The samples were analysed by fluoride ion selective potentiometry. The highest concentrations in Tenerife were found in the municipalities of Sauzal (7.00 mg/L) and Tegueste (5.39 mg/L), both water samples are over the parametric value of 1.5 mg/L set in the supply water legislation. In the Gran Canaria Island, the highest fluoride levels were found in Valsequillo and Mogán with 1.44 mg/L in both locations, but under the parametric fluoride value abovementioned. Consumption of just 1 L of water per day in the El Sauzal area would result in a contribution rate of 77% for adults and children over 15 years of age (Upper Level value of 7 mg/day) and 108% for children 9-14 years of age (UL value of 5 mg/day). The contribution rates increase considerably, reaching or exceeding 100% of the reference value (UL) with increasing consumption of 1 to 2 L of water per day. Therefore, it is considered that there is a health risk of overexposure to fluoride on the island of Tenerife. In the case of the island of Gran Canaria, it has been shown that even the consumption of 2 litres of water per day does not confer contribution rates that pose a health risk.

6.
Foods ; 12(3)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36765966

ABSTRACT

There are a large number of pests which are detrimental to plant production, specifically to banana cultivation, and the use of pesticides is the main method of control of these pests. Therefore, the number of active substances in pesticides has been steadily increasing since before the Second World War. There is growing consumer concern about the health effects of pesticide residues and there is certainly evidence of a link between pesticide exposure and the prevalence of chronic diseases. Therefore, it is of particular interest to study the presence of pesticide residues in bananas and their toxicological, agricultural and legal implications. In this study, the content of pesticide residues in bananas produced in the Canary Islands during a ten-year period from 2008 to 2017 was determined. A total of 733 samples of bananas were analysed during the study period, in which 191 different active substances were investigated, involving 103,641 assessments. The samples analysed were selected in such a way that they are representative of the banana sector in the Canary Islands as a whole, taking into account geographical and climatic factors, cultivation methods and the processing of bananas in packaging, which are the differentiating factors in the use of pesticides. The reference parameter for the residue investigation is the MRL (maximum residue limit).

7.
Biol Trace Elem Res ; 201(11): 5069-5082, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36807885

ABSTRACT

Infertility has become more common, with an increased exposure to toxic compounds including heavy metals (HM). Follicular fluid (FF) surrounds the developing oocyte in the ovary and can be analysed to assess metal content. The levels of twenty-two metals were measured in the FF of ninety-three females in a reproduction unit, and their influence on assisted reproduction technique (ART), were examined. The metals were determined by optical emission spectrophotometry. Low values of copper, zinc, aluminium, and calcium favour polycystic ovary syndrome. The relationships between the number of oocytes and metals: iron (rs=0.303; p=0.003) and calcium (rs=-0.276; p=0.007) are significant, as well as between the number of mature oocytes with iron (rs=0.319; p=0.002), calcium (rs=-0.307; p=0.003) and sodium (rs=-0.215; p=0.039) and are near to significance in the case of aluminium (rs=-0.198; p=0.057). In the group with a fertilisation rate ≤ 75%, 36% of the women presented calcium >176.62 mg/kg compared to the group with a fertilisation rate ≥ 75% where this percentage was only 10% (p=0.011). An excess of iron and calcium reduces the good quality embryo rate, and an excess of potassium impairs the blastocyst rate. If potassium is above 237.18 mg/kg and calcium is below 147.32 mg/kg, these conditions favour embryo implantation. Pregnancy is influenced by high potassium and low copper levels. Controlling exposure to toxic elements is recommended for all couples with reduced fertility or receiving an ART.


Subject(s)
Copper , Follicular Fluid , Pregnancy , Humans , Female , Calcium , Aluminum , Reproduction , Iron , Potassium
9.
Life (Basel) ; 12(10)2022 Oct 16.
Article in English | MEDLINE | ID: mdl-36295050

ABSTRACT

Fluoride is present in various foods ingested daily. It has been demonstrated that the intake of high concentrations of fluoride, both in adults and children, can cause pathologies, among which dental fluorosis, osteoporosis and damage to the central nervous system stand out. The objective of this study was to determine the fluoride concentrations in 60 samples of ready-to-drink cold brewed coffee of different brands and types (expresso, cappuccino, macchiato and decaffeinated) by the fluoride ion-selective potentiometric method. A statistical analysis was also performed to discern the existence of differences between these categories. The highest fluoride concentration (1.465 mg/L) was found in espresso coffee followed by Macchiato (1.254 mg/L). Decaffeinated coffee is the one that presented the lowest fluoride concentration with 0.845 mg/L. The risk assessment was conducted considering different consumption scenarios (250, 500 and 750 mL/day). The UL (upper level) established by the EFSA (European Food Safety Authority) at 7 mg/day was used. The consumption of three servings poses no health risk; however, it confers a significant value of fluoride contribution to the diet.

10.
Foods ; 11(14)2022 Jul 17.
Article in English | MEDLINE | ID: mdl-35885364

ABSTRACT

The consumption of vegetable milk as a substitute for cow's milk has increased in recent years. Of all the vegetable beverages on the market, soy is the most widely consumed. Soy is exposed to contamination by different chemical elements during harvesting. In this study, the concentration of fluoride in soy beverages was analyzed. Fluoride is an element that in high concentrations can be toxic, causing dental and bone fluorosis. The aims of the study were (i) to analyze the fluoride concentration in 30 samples in the most popular brands (A-Brand, B-Brand, C-Brand) of soybean beverages by a fluoride ion selective potentiometer and (ii) to evaluate the toxicological risk derived from its consumption. The fluoride concentrations were 15.5 mg/L (A-Brand), 11.3 mg/L (B-Brand) and 8.5 mg/L (C-Brand). A consumption of 1 to 3 servings/day was established. One serving (200 mL) of soybean beverage offered a contribution percentage over the ADI (acceptable daily intake) for infants and children. Teenagers and adults did not exceed the ADI (10 mg/day). The consumption of soy beverages contributes significantly to the daily intake of fluoride, which could exceed the ADI with a consequent health risk. It is recommended to control the fluoride levels in the raw material and in the final product to assure the safety of these products.

11.
Article in English | MEDLINE | ID: mdl-35162198

ABSTRACT

Microplastics (MPs) have been identified as emerging environmental pollutants classified as primary or secondary based on their source. Composition, shape, size, and colour, among other characteristics, are associated with their capacity to access the food chain and their risks. While the environmental impact of MPs has received much attention, the risks for humans derived from their dietary exposure have not been yet assessed. Several institutions and researchers support that the current knowledge does not supply solid data to complete a solid risk characterization of dietary MPs. The aim of this paper is to review the current knowledge about MPs in foods and to discuss the challenges and gaps for a risk analysis. The presence of MPs in food and beverages has been worldwide observed, but most authors considered the current data to be not only insufficient but of questionable quality mainly because of the outstanding lack of consensus about a standardized quantifying method and a unified nomenclature. Drinking water, crustaceans/molluscs, fish, and salt have been identified as relevant dietary sources of MPs for humans by most published studies. The hazard characterization presents several gaps concerning the knowledge of the toxicokinetic, toxicodynamic, and toxicity of MPs in humans that impede the estimation of food safety standards based on risk. This review provides a tentative exposure assessment based on the levels of MPs published for drinking water, crustaceans and molluscs, fish, and salt and using the mean European dietary consumption estimates. The intake of 2 L/day of water, 70.68 g/day of crustaceans/molluscs, 70.68 g/day of fish, and 9.4 g/day of salt would generate a maximum exposure to 33,626, 212.04, 409.94 and 6.40 particles of MPs/day, respectively. The inexistence of reference values to evaluate the MPs dietary intake prevents the dietary MPs risk characterization and therefore the management of this risk. Scientists and Food Safety Authorities face several challenges but also opportunities associated to the occurrence of MPs in foods. More research on the MPs characterization and exposure is needed bearing in mind that any future risk assessment report should involve a total diet perspective.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Environmental Monitoring , Food Safety , Humans , Plastics/toxicity , Water Pollutants, Chemical/analysis
12.
J Microbiol Biotechnol ; 32(1): 64-71, 2022 Jan 28.
Article in English | MEDLINE | ID: mdl-34675139

ABSTRACT

The discarding of wastes into the environment is a significant problem for many communities. Still, food waste can be used for lactic acid bacteria (LAB) growth. Here, we evaluated three growth media equivalent to de Mann Rogosa Sharpe (MRS), using apple bagasse, yeast waste, fish flour, forage oats, and cheese whey. Cell-free supernatants of eight LAB strains were tested for antimicrobial activity against nine indicator microorganisms. The supernatants were also evaluated for protein content, reducing sugars, pH, and lactic acid concentration. Cell-free supernatants from fish flour broth (FFB) LAB growth were the most effective. The strain Leuconostoc mesenteroides PIM5 presented the best activity in all media. L. mesenteroides CAL14 completely inhibited L. monocytogenes and strongly inhibited Bacillus cereus (91.1%). The strain L. mesenteroides PIM5 consumed more proteins (77.42%) and reducing sugars (56.08%) in FFB than in MRS broth (51.78% and 30.58%, respectively). Culture media formulated with agroindustrial wastes positively improved the antimicrobial activity of selected LAB, probably due to the production of antimicrobial peptides or bacteriocins.


Subject(s)
Anti-Infective Agents/pharmacology , Culture Media/chemistry , Lactobacillales/physiology , Wastewater/chemistry , Animals , Bacillus cereus , Cheese , Fermentation , Food Microbiology , Lactobacillus , Leuconostoc mesenteroides/drug effects , Listeria monocytogenes/drug effects , Whey
13.
Foods ; 9(10)2020 Oct 02.
Article in English | MEDLINE | ID: mdl-33023126

ABSTRACT

Lactic acid bacteria (LAB) are an important source of bioactive metabolites and enzymes. LAB isolates from fresh vegetable sources were evaluated to determine their antimicrobial, enzymatic, and adhesion activities. A saline solution from the rinse of each sample was inoculated in De Man, Rogosa and Sharpe Agar (MRS Agar) for isolates recovery. Antimicrobial activity of cell-free supernatants from presumptive LAB isolates was evaluated by microtitration against Gram-positive, Gram-negative, LAB, mold, and yeast strains. Protease, lipase, amylase, citrate metabolism and adhesion activities were also evaluated. Data were grouped using cluster analysis, with 85% of similarity. A total of 76 LAB isolates were recovered, and 13 clusters were formed based on growth inhibition of the tested microorganisms. One cluster had antimicrobial activity against Gram-positive bacteria, molds and yeasts. Several LAB strains, PIM4, ELO8, PIM5 and CAL14 strongly inhibited the growth of L. monocytogenes and JAV15 and TOV9 strongly inhibited the growth of F. oxysporum. Based on enzymatic activities, 5 clusters were formed. Seven isolates hydrolyzed starch, 46 proteins, 14 lipids, and 36 metabolized citrate. LAB isolates with the best activities were molecularly identified as Leuconostoc mesenteroides, Enterococcus mundtii and Enterococcus faecium. Overall, LAB isolated from vegetables showed potential technological applications and should be further evaluated.

14.
Biomolecules ; 10(7)2020 07 16.
Article in English | MEDLINE | ID: mdl-32708695

ABSTRACT

In northern Mexico, the distilled spirit sotol with a denomination of origin is made from species of Dasylirion. The configuration of the volatile metabolites produced during the spontaneous fermentation of Dasylirion sp. must is insufficiently understood. In this study, the aim was to investigate the composition of the microbial consortia, describe the variation of volatile metabolites, and relate such profiles with their particular flavor attributes during the fermentation of sotol (Dasylirion sp.) must. Ascomycota was the phylum of most strains identified with 75% of total abundance. The genus of fermenting yeasts constituted of 101 Pichia strains and 13 Saccharomyces strains. A total of 57 volatile metabolites were identified and grouped into ten classes. The first stage of fermentation was composed of diesel, green, fruity, and cheesy attributes due to butyl 2-methylpropanoate, octan-1-ol, ethyl octanoate, and butanal, respectively, followed by a variation to pungent and sweet descriptors due to 3-methylbutan-1-ol and butyl 2-methylpropanoate. The final stage was described by floral, ethereal-winey, and vinegar attributes related to ethyl ethanimidate, 2-methylpropan-1-ol, and 2-hydroxyacetic acid. Our results improve the knowledge of the variations of volatile metabolites during the fermentation of sotol must and their contribution to its distinctive flavor.


Subject(s)
Alcoholic Beverages , Asparagaceae/metabolism , Fermentation , Flavoring Agents/metabolism , Volatile Organic Compounds/metabolism , Alcoholic Beverages/analysis , Asparagaceae/chemistry , Flavoring Agents/analysis , Mexico , Pichia/metabolism , Saccharomyces cerevisiae/metabolism , Taste , Volatile Organic Compounds/analysis
15.
Pathogens ; 9(6)2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32575493

ABSTRACT

Yeasts can adapt to a wide range of pH fluctuations (2 to 10), while Helicobacter pylori, a facultative intracellular bacterium, can adapt to a range from pH 6 to 8. This work analyzed if H. pylori J99 can protect itself from acidic pH by entering into Candida albicans ATCC 90028. Growth curves were determined for H. pylori and C. albicans at pH 3, 4, and 7. Both microorganisms were co-incubated at the same pH values, and the presence of intra-yeast bacteria was evaluated. Intra-yeast bacteria-like bodies were detected using wet mounting, and intra-yeast binding of anti-H. pylori antibodies was detected using immunofluorescence. The presence of the H. pylori rDNA 16S gene in total DNA from yeasts was demonstrated after PCR amplification. H. pylori showed larger death percentages at pH 3 and 4 than at pH 7. On the contrary, the viability of the yeast was not affected by any of the pHs evaluated. H. pylori entered into C. albicans at all the pH values assayed but to a greater extent at unfavorable pH values (pH 3 or 4, p = 0.014 and p = 0.001, respectively). In conclusion, it is possible to suggest that H. pylori can shelter itself within C. albicans under unfavorable pH conditions.

16.
J Food Biochem ; 43(7): e12896, 2019 07.
Article in English | MEDLINE | ID: mdl-31353692

ABSTRACT

Maize silks have been used in Mexico for centuries as a natural-based treatment for various illnesses, including obesity and diabetes. It has been shown in mice that intake of maize silk extracts reduces the levels of blood glucose. However, it is not clear how or what maize silk compounds are involved in such an effect. A hypothesized mechanism is that some maize silk compounds can inhibit carbohydrate hydrolyzing enzymes like α-glucosidases. This work aimed to assess the capability of both saccharides and phenolic compounds from maize silks to inhibit intestinal α-glucosidases. Results showed that saccharides from maize silks did not produce inhibition on intestinal α-glucosidases, but phenolics did. Maize silk phenolics increased the value of Km significantly and decreased the Vmax slightly, indicating a mixed inhibition of α-glucosidases. According to the molecular docking analysis, the phenolics maysin, methoxymaysin, and apimaysin, which had the highest predicted binding energies, could be responsible for the inhibition of α-glucosidases. PRACTICAL APPLICATIONS: The International Diabetes Federation (IDF) reported in 2017 that diabetes affects over 424 million people worldwide, and caused 4 million deaths. Non-insulin-dependent diabetes or type 2 diabetes mellitus (T2DM) accounts for ∼90% of cases. T2DM is characterized by insulin resistance and pancreatic ß-cell failure. Therapy for T2DM includes the use of sulfonylureas, thiazolidinediones, biguanides, and α-glucosidase inhibitors. Regarding the α-glucosidase inhibitors, only few are commercially available, and these have been associated with severe gastrointestinal side effects. This work aimed to assess the capability of both saccharides and phenolic compounds from maize silks to inhibit intestinal α-glucosidases. Results from this work evidenced that maize silk polyphenols acted as effective inhibitors of intestinal rat α-glucosidases. Computational analysis of maize silk polyphenols indicated that maysin, a particular flavonoid from maize silks, could be responsible for the inhibition of α-glucosidases.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Flowers/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Hypoglycemic Agents/pharmacology , Phenols/pharmacology , Zea mays/chemistry , alpha-Glucosidases/metabolism , Blood Glucose/drug effects , Flavonoids/chemistry , Flavonoids/pharmacology , Glucosides/chemistry , Glucosides/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Hypoglycemic Agents/chemistry , Intestines/enzymology , Kinetics , Molecular Docking Simulation , Phenols/chemistry , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Polyphenols/chemistry , Polyphenols/pharmacology
17.
Antimicrob Agents Chemother ; 60(2): 925-35, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26621620

ABSTRACT

The aminoglycoside Geneticin (G418) is known to inhibit cell culture proliferation, via virus-specific mechanisms, of two different virus genera from the family Flaviviridae. Here, we tried to determine whether Geneticin can selectively alter the switching of the nucleotide 1 to 570 RNA region of hepatitis C virus (HCV) and, if so, whether this inhibits viral growth. Two structure-dependent RNases known to specifically cleave HCV RNA were tested in the presence or absence of the drug. One was the Synechocystis sp. RNase P ribozyme, which cleaves the tRNA-like domain around the AUG start codon under high-salt buffer conditions; the second was Escherichia coli RNase III, which recognizes a double-helical RNA switch element that changes the internal ribosome entry site (IRES) from a closed (C) conformation to an open (O) one. While the drug did not affect RNase P activity, it did inhibit RNase III in the micromolar range. Kinetic studies indicated that the drug favors the switch from the C to the O conformation of the IRES by stabilizing the distal double-stranded element and inhibiting further processing of the O form. We demonstrate that, because the RNA in this region is highly conserved and essential for virus survival, Geneticin inhibits HCV Jc1 NS3 expression, the release of the viral genomic RNA, and the propagation of HCV in Huh 7.5 cells. Our study highlights the crucial role of riboswitches in HCV replication and suggests the therapeutic potential of viral-RNA-targeted antivirals.


Subject(s)
Antiviral Agents/pharmacology , Gentamicins/pharmacology , Hepacivirus/drug effects , Hepacivirus/genetics , RNA, Viral/chemistry , Cell Line, Tumor/virology , Codon, Initiator , Hepacivirus/pathogenicity , Humans , Kinetics , Nucleic Acid Conformation , RNA, Viral/metabolism , Ribonuclease III/chemistry , Ribonuclease III/metabolism , Ribonuclease P/chemistry , Ribonuclease P/metabolism , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
20.
ScientificWorldJournal ; 2013: 426492, 2013.
Article in English | MEDLINE | ID: mdl-23853536

ABSTRACT

This study is aimed at assessing atmospheric deposition of heavy metals using the epiphytic moss genera Fabronia ciliaris collected from six urban sites in the Metropolitan Zone of the Toluca Valley in Mexico. The concentrations of K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Rb, Sr, and Pb were determined by total reflection X-ray fluorescence technique. Results show that the average metal concentration decrease in the following order: Fe (8207 mg/Kg) > Ca (7315 mg/Kg) > K (3842 mg/Kg) > Ti (387 mg/Kg) > Mn, Zn (191 mg/Kg) > Sr (71 mg/Kg) > Pb (59 mg/Kg) > Cu, V (32 mg/Kg) > Cr (24 mg/Kg) > Rb (13 mg/Kg) > Ni (10 mg/Kg). Enrichment factors show a high enrichment for Cr, Cu, Zn, and Pb which provides an evidence of anthropogenic impact in the industrial and urban areas, mainly due to the intense vehicular traffic and the fossil fuel combustion. Monitoring techniques in mosses have proved to be a powerful tool for determining the deposition of heavy metals coming from diverse point sources of pollution.


Subject(s)
Air Pollutants/analysis , Biological Assay/methods , Bryophyta/chemistry , Environmental Monitoring/methods , Metals, Heavy/analysis , Spectrometry, X-Ray Emission/methods , Mexico
SELECTION OF CITATIONS
SEARCH DETAIL
...