Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microsc Microanal ; 26(1): 53-62, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31831082

ABSTRACT

This study explores magnetization exhibited by nanoscale platinum-based structures embedded in pure silica plates. A superposition of laser pulses in the samples produced periodic linear arrangements of micro-sized structures. The samples were integrated by PtO2 microstructures (PtOΣs) with dispersed Pt oxide nanoparticles in their surroundings. The characterization of the materials was performed by high transmission electron microscopy studies. Furthermore, topographical and magnetic effects on the sample surfaces were analyzed by atomic force microscopy and magnetic force microscopy, respectively. The magnetic measurements indicated an enhancement in the gradient phase shift and in the gradient force related to the magnetic PtOΣs. The possibility of tuning the magnetic characteristics of the samples through contact with a Nd2Fe14B magnet was demonstrated. This process corresponds to an innovative method for obtaining magnetic PtOΣs induced by laser pulses. Moreover, an increase in the compactness of the silica with platinum-based structures was confirmed by an evaluation of the effective elastic modulus with reference to pure silica. The multimodal magnetic structures studied in this work seem to be candidates for developing high-density magnetic storage media.

2.
ACS Omega ; 3(12): 16934-16944, 2018 Dec 31.
Article in English | MEDLINE | ID: mdl-31458317

ABSTRACT

Hybrid powder coatings (HPC) with low friction and high hardness enhance the sliding speed and allow interlocking or meshing products to slide effortlessly within each other, saving energy. In automobiles, they decrease fuel consumption and greenhouse gas emission. In the present work, a new insight of the key role played by the coverage density of triethoxyphenylsilane (TPS) grafted to SiO2 nanoparticles over the friction coefficient, hardness, elastic modulus, and roughness of HPC is presented for the first time. In all cases, a very low amount (0.1 wt %) of functionalized or unfunctionalized SiO2 nanoparticles were added to a powder-coating formulation based on polyester resin. HPC formulated with functionalized nanoparticles at a suitable coverage density (HPC-TPS3) exhibited significantly low friction coefficient (µ = 0.12), strong wear resistance (under dry sliding conditions at 1 and 5 N of load), low roughness (R q = 3.5 nm), and high hardness and elastic modulus on the surface. We demonstrated that it is possible to tune the macroscopic properties by varying only the coverage density of TPS that is chemically attached to SiO2 nanoparticles. Also, a physicochemical explanation was disclosed, wherein a hydrophilic-hydrophobic balance between -OH and phenyl groups was proposed. In all cases, the phenyl group allows the migration of functionalized nanoparticles through the polyester matrix, enhancing the hardness and elastic modulus on the surface. Thus, the functional nanomaterial design with tunable coverage density is a powerful tool to improve the physical and superficial properties of powder coatings using low amounts of nanomaterial.

SELECTION OF CITATIONS
SEARCH DETAIL
...