Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Brain Res ; 427: 113857, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35331742

ABSTRACT

The increase of dopamine (DA) in the reward system is related to the reinforcing effects of drugs of abuse and hyper locomotion induced by psychostimulants. The increase of DA induced by drugs of abuse generates high amounts of ROS by monoamines metabolization. It has been showed that ROS could modulate psychomotor response and reinforcing effects induced by drugs of abuse as cocaine and methamphetamine (METH). The aim of this study is to evaluate the relation of ROS and amphetamine (AMPH). Here, we show that pretreatment of the ROS scavenger 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) attenuates the induction of locomotion and oxidative stress generated in nucleus accumbens (Nac) by acute AMPH administration. Interestingly, TEMPOL also attenuates the increase of DA induced by AMPH in Nac. Finally, TEMPOL reduces DAT phosphorylation when AMPH is co-infused in Nac synaptosomes. Taking together, our results suggest that ROS modulate AMPH effects in rats.


Subject(s)
Amphetamine , Dopamine , Amphetamine/pharmacology , Animals , Dopamine/pharmacology , Locomotion , Nucleus Accumbens , Rats , Reactive Oxygen Species
2.
Addict Biol ; 26(5): e13017, 2021 09.
Article in English | MEDLINE | ID: mdl-33559278

ABSTRACT

Cocaine not only increases brain dopamine levels but also activates the sigma1 receptor (σ1 R) that in turn regulates orexigenic receptor function. Identification of interactions involving dopamine D1 (D1 R), ghrelin (GHS-R1a ), and σ1 receptors have been addressed by biophysical techniques and a complementation approach using interfering peptides. The effect of cocaine on receptor functionality was assayed by measuring second messenger, cAMP and Ca2+ , levels. The effect of acute or chronic cocaine administration on receptor complex expression was assayed by in situ proximity ligation assay. In silico procedures were used for molecular model building. σ1 R KO mice were used for confirming involvement of this receptor. Upon identification of protomer interaction and receptor functionality, a unique structural model for the macromolecular complex formed by σ1 R, D1 R, and GHS-R1a is proposed. The functionality of the complex, able to couple to both Gs and Gq proteins, is affected by cocaine binding to the σ1 R, as confirmed using samples from σ1 R-/- mice. The expression of the macromolecular complex was differentially affected upon acute and chronic cocaine administration to rats. The constructed 3D model is consistent with biochemical, biophysical, and available structural data. The σ1 R, D1 R, and GHS-R1a complex constitutes a functional unit that is altered upon cocaine binding to the σ1 R. Remarkably, the heteromer can simultaneously couple to two G proteins, thus allowing dopamine to signal via Ca2+ and ghrelin via cAMP. The anorexic action of cocaine is mediated by such complex whose expression is higher after acute than after chronic administration regimens.


Subject(s)
Cocaine/pharmacology , Hunger/drug effects , Animals , Brain/drug effects , Dopamine/metabolism , Dopamine Uptake Inhibitors/pharmacology , Male , Mice , Neurons/drug effects , Rats , Receptors, Dopamine D1/metabolism , Receptors, Ghrelin/metabolism , Receptors, sigma , Sigma-1 Receptor
3.
Int J Neuropsychopharmacol ; 23(2): 108-116, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31800046

ABSTRACT

BACKGROUND: Basolateral amygdalar projections to the prefrontal cortex play a key role in modulating behavioral responses to stress stimuli. Among the different neuromodulators known to impact basolateral amygdalar-prefrontal cortex transmission, the corticotrophin releasing factor (CRF) is of particular interest because of its role in modulating anxiety and stress-associated behaviors. While CRF type 1 receptor (CRFR1) has been involved in prefrontal cortex functioning, the participation of CRF type 2 receptor (CRFR2) in basolateral amygdalar-prefrontal cortex synaptic transmission remains unclear. METHODS: Immunofluorescence anatomical studies using rat prefrontal cortex synaptosomes devoid of postsynaptic elements were performed in rats with intra basolateral amygdalar injection of biotinylated dextran amine. In vivo microdialysis and local field potential recordings were used to measure glutamate extracellular levels and changes in long-term potentiation in prefrontal cortex induced by basolateral amygdalar stimulation in the absence or presence of CRF receptor antagonists. RESULTS: We found evidence for the presynaptic expression of CRFR2 protein and mRNA in prefrontal cortex synaptic terminals originated from basolateral amygdalar. By means of microdialysis and electrophysiological recordings in combination with an intra-prefrontal cortex infusion of the CRFR2 antagonist antisauvagine-30, we were able to determine that CRFR2 is functionally positioned to limit the strength of basolateral amygdalar transmission to the prefrontal cortex through presynaptic inhibition of glutamate release. CONCLUSIONS: Our study shows for the first time to our knowledge that CRFR2 is expressed in basolateral amygdalar afferents projecting to the prefrontal cortex and exerts an inhibitory control of prefrontal cortex responses to basolateral amygdalar inputs. Thus, changes in CRFR2 signaling are likely to disrupt the functional connectivity of the basolateral amygdalar-prefrontal cortex pathway and associated behavioral responses.


Subject(s)
Basolateral Nuclear Complex/physiology , Glutamic Acid/metabolism , Long-Term Potentiation/physiology , Nerve Net/physiology , Neural Inhibition/physiology , Prefrontal Cortex/physiology , Receptors, Corticotropin-Releasing Hormone/physiology , Synaptic Transmission/physiology , Animals , Basolateral Nuclear Complex/metabolism , Male , Nerve Net/metabolism , Prefrontal Cortex/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Corticotropin-Releasing Hormone/metabolism
4.
Mol Neurobiol ; 56(2): 1196-1210, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29876881

ABSTRACT

Despite ancient knowledge on cocaine appetite-suppressant action, the molecular basis of such fact remains unknown. Addiction/eating disorders (e.g., binge eating, anorexia, bulimia) share a central control involving reward circuits. However, we here show that the sigma-1 receptor (σ1R) mediates cocaine anorectic effects by interacting in neurons with growth/hormone/secretagogue (ghrelin) receptors. Cocaine increases colocalization of σ1R and GHS-R1a at the cell surface. Moreover, in transfected HEK-293T and neuroblastoma SH-SY5Y cells, and in primary neuronal cultures, pretreatment with cocaine or a σ1R agonist inhibited ghrelin-mediated signaling, in a similar manner as the GHS-R1a antagonist YIL-781. Results were similar in G protein-dependent (cAMP accumulation and calcium release) and in partly dependent or independent (ERK1/2 phosphorylation and label-free) assays. We provide solid evidence for direct interaction between receptors and the functional consequences, as well as a reliable structural model of the macromolecular σ1R-GHS-R1a complex, which arises as a key piece in the puzzle of the events linking cocaine consumption and appetitive/consummatory behaviors.


Subject(s)
Cocaine/pharmacology , Corpus Striatum/drug effects , Dopamine Uptake Inhibitors/pharmacology , Ghrelin/metabolism , Neurons/drug effects , Oleanolic Acid/analogs & derivatives , Receptors, sigma/metabolism , Saponins/metabolism , Animals , Calcium/metabolism , Cells, Cultured , Corpus Striatum/cytology , Corpus Striatum/metabolism , HEK293 Cells , Humans , Male , Models, Molecular , Neurons/cytology , Neurons/metabolism , Oleanolic Acid/metabolism , Phosphorylation , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Sigma-1 Receptor
5.
Neuropharmacology ; 152: 102-111, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30465812

ABSTRACT

Stress is one of the factors underlying drug seeking behavior that often goes in parallel with loss of appetite. We here demonstrate that orexin 1 receptors (OX1R) may form complexes with the corticotropin releasing factor CRF2 receptor. Two specific features of the heteromer were a cross-antagonism and a blockade by CRF2 of OX1R signaling. In cells expressing one of the receptors, agonist-mediated signal transduction mechanisms were potentiated by amphetamine. Sigma 1 (σ1) and 2 (σ2) receptors are targets of drugs of abuse and, despite sharing a similar name, the two receptors are structurally unrelated and their physiological role is not known. We here show that σ1 receptors interact with CRF2 receptors and that σ2 receptors interact with OX1R. Moreover, we show that amphetamine effect on CRF2 receptors was mediated by σ1R whereas the effect on OX1 receptors was mediated by σ2R. Amphetamine did potentiate the negative cross-talk occurring within the CRF2-OX1 receptor heteromer context, likely by a macromolecular complex involving the two sigma receptors and the two GPCRs. Finally, in vivo microdialysis experiments showed that amphetamine potentiated orexin A-induced dopamine and glutamate release in the ventral tegmental area (VTA). Remarkably, the in vivo orexin A effects were blocked by a selective CRF2R antagonist. These results show that amphetamine impacts on the OX1R-, CRF2R- and OX1R/CRF2R-mediated signaling and that cross-antagonism is instrumental for in vivo detection of GPCR heteromers. This article is part of the Special Issue entitled 'Receptor heteromers and their allosteric receptor-receptor interactions'.


Subject(s)
Amphetamine/pharmacology , Orexin Receptors/metabolism , Receptor Cross-Talk/physiology , Receptors, Corticotropin-Releasing Hormone/metabolism , Animals , Dopamine/metabolism , Glutamic Acid/metabolism , HEK293 Cells , Humans , Male , Orexin Receptors/physiology , Rats, Sprague-Dawley , Receptors, Corticotropin-Releasing Hormone/physiology , Signal Transduction
6.
Front Mol Neurosci ; 11: 17, 2018.
Article in English | MEDLINE | ID: mdl-29483862

ABSTRACT

Sigma σ1 and σ2 receptors are targets of cocaine. Despite sharing a similar name, the two receptors are structurally unrelated and their physiological role is unknown. Cocaine increases the level of dopamine, a key neurotransmitter in CNS motor control and reward areas. While the drug also affects dopaminergic signaling by allosteric modulations exerted by σ1R interacting with dopamine D1 and D2 receptors, the potential regulation of dopaminergic transmission by σ2R is also unknown. We here demonstrate that σ2R may form heteroreceptor complexes with D1 but not with D2 receptors. Remarkably σ1, σ2, and D1 receptors may form heterotrimers with particular signaling properties. Determination of cAMP levels, MAP kinase activation and label-free assays demonstrate allosteric interactions within the trimer. Importantly, the presence of σ2R induces bias in signal transduction as σ2R ligands increase cAMP signaling whereas reduce MAP kinase activation. These effects, which are opposite to those exerted via σ1R, suggest that the D1 receptor-mediated signaling depends on the degree of trimer formation and the differential balance of sigma receptor and heteroreceptor expression in acute versus chronic cocaine consumption. Although the physiological role is unknown, the heteroreceptor complex formed by σ1, σ2, and D1 receptors arise as relevant to convey the cocaine actions on motor control and reward circuits and as a key factor in acquisition of the addictive habit.

7.
Neuropharmacology ; 128: 76-85, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28963038

ABSTRACT

The mechanisms commanding the activity of dopaminergic neurons of the ventral tegmental area (VTA) and the location of these neurons are relevant for the coding and expression of motivated behavior associated to reward-related signals. Anatomical evidence shows that several brain regions modulate VTA dopaminergic neurons activity via multiple mechanisms. However, there is still scarce knowledge of how the lateral septum (LS) modulates VTA activity. We performed in-vivo dual-probe microdialysis to measure VTA dopamine, glutamate and GABA extracellular levels after LS stimulation in the presence or absence of GABAergic antagonists. Anterograde tracing and immunohistochemical analysis was used to reveal the anatomical relationship between LS and VTA. LS stimulation significantly increased dopamine and GABA, but not glutamate, VTA extracellular levels. Intra VTA infusion of bicuculline, GABA-A receptor antagonist, inhibited the increase of dopamine but not of GABA VTA levels induced by LS stimulation. Intra VTA infusion of indiplon, selective positive allosteric modulator of GABA-A receptors containing alpha1 subunit, significantly increases VTA dopamine extracellular levels induced by LS. Combined c-Fos and tyrosine hydroxylase immunohistochemistry, revealed that LS stimulation increases the activity of dopaminergic neurons in the antero-ventral region of the VTA. Consistently, anterograde tracing with biotinylated dextran amine revealed the existence of fibers arising from the LS to the antero-ventral region of the VTA. Taken together, our results suggest that LS modulates dopaminergic activity in the antero-ventral region of VTA by inhibiting GABAergic interneurons bearing GABA-A receptors containing alpha1 subunit.


Subject(s)
Dopaminergic Neurons/physiology , Neural Pathways/physiology , Receptors, GABA-A/metabolism , Septal Nuclei/physiology , Ventral Tegmental Area/cytology , Analysis of Variance , Animals , Benzylamines/pharmacology , Biotin/analogs & derivatives , Biotin/metabolism , Dextrans/metabolism , Dopamine/metabolism , Dose-Response Relationship, Drug , GABA Agents/pharmacology , Glutamic Acid/metabolism , Male , Phosphinic Acids/pharmacology , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Sprague-Dawley , Tyrosine 3-Monooxygenase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...