Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Hazard Mater ; 448: 130964, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36860048

ABSTRACT

As population growth and climate change add to the problem of water scarcity in many regions, the argument for using treated wastewater for irrigation is becoming increasingly compelling, which makes understanding the risks associated with the uptake of harmful chemicals by crops crucial. In this study, the uptake of 14 chemicals of emerging concern (CECs) and 27 potentially toxic elements (PTEs) was studied in tomatoes grown in soil-less (hydroponically) and soil (lysimeters) media irrigated with potable and treated wastewater using LC-MS/MS and ICP-MS. Bisphenol S, 2,4 bisphenol F, and naproxen were detected in fruits irrigated with spiked potable water and wastewater under both conditions, with BPS having the highest concentration (0.034-0.134 µg kg-1 f. w.). The levels of all three compounds were statistically more significant in tomatoes grown hydroponically (

Subject(s)
Drinking Water , Solanum lycopersicum , Chromatography, Liquid , Tandem Mass Spectrometry , Wastewater
2.
Molecules ; 27(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36500727

ABSTRACT

This study analyzed 16 bisphenols (BPs) in wastewater and sludge samples collected from different stages at a municipal wastewater treatment plant based on sequencing batch reactor technology. It also describes developing an analytical method for determining BPs in the solid phase of activated sludge based on solid-phase extraction and gas chromatography-mass spectrometry. Obtained concentrations are converted into mass flows, and the biodegradation of BPs and adsorption to primary and secondary sludge are determined. Ten of the sixteen BPs were present in the influent with concentrations up to 434 ng L-1 (BPS). Only five BPs with concentrations up to 79 ng L-1 (BPA) were determined in the plant effluent, accounting for 8 % of the total BPs determined in the influent. Eleven per cent of the total BPs were adsorbed on primary and secondary sludge. Overall, BPs biodegradation efficiency was 81%. The highest daily emissions via effluent release (1.48 g day-1) and sludge disposal (4.63 g day-1) were for BPA, while total emissions reached 2 g day-1 via effluent and 6 g day-1 via sludge disposal. The data show that the concentrations of BPs in sludge are not negligible, and their environmental emissions should be monitored and further studied.


Subject(s)
Water Pollutants, Chemical , Water Purification , Water Pollutants, Chemical/analysis , Benzhydryl Compounds/analysis , Phenols/analysis , Sewage/analysis , Waste Disposal, Fluid
3.
Sci Total Environ ; 837: 155707, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35537510

ABSTRACT

Developing novel, fast and efficient ecologically benign processes for removing organic contaminants is important for the continued development of water treatment. For this reason, this study investigates the implementation of Cold Atmospheric pressure Plasma (CAP) generated in ambient air as an efficient tool for the removal of Bisphenol A (BPA) and Bisphenol S (BPS)-known endocrine disrupting compounds in water and wastewater, by monitoring degradation kinetics and its transformation products. The highest removal efficiencies of BPA (>98%) and BPS (>70%) were obtained after 480 s of CAP exposure. A pseudo-first-order kinetic revealed that BPA (-kt = 4.4 ̶ 9.0 ms-1) degrades faster than BPS (-kt = 0.4 ̶ 2.4 ms-1) and that the degradation is also time- and CAP power-dependent, while the initial concentration or matrix type had a negligible effect. This study also tentatively identified three previously reported and one novel transformation product of BPA and four novel transformation products of BPS. Their postulated structures suggested similar breakdown mechanisms, i.e., hydroxylation followed by ring cleavage. The results demonstrate that CAP technology is an effective process for the degradation of both BPA and BPS without the need for additional chemicals, indicating that CAP is a promising technology for water and wastewater remediation worthy of further investigation and optimization.


Subject(s)
Plasma Gases , Water Pollutants, Chemical , Atmospheric Pressure , Benzhydryl Compounds/analysis , Phenols , Wastewater/chemistry , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...