Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(13): 15251-15258, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38585060

ABSTRACT

Black titanium dioxide (B-TiO2) is a highly active photoelectrochemical material compared to pure titanium dioxide due to its increased light absorption properties. Recently, we presented the deposition of thin-film B-TiO2 using an asymmetric bipolar reactive magnetron sputter process. The resulting samples exhibit excellent photoelectrochemical properties, which can be fine-tuned by varying the process parameters. In this article, results of morphological, electrical, and photoelectrochemical measurements are discussed to better understand the surprisingly high electrochemical activity of the films. In order to study the influence of the dynamic process on film formation, we use static sputtering with a fixed substrate covering the entire chamber area in front of the two targets. This allows the material composition of the sputtered film to be analyzed depending on its relative position to the targets. The results lead to the conclusion that the asymmetric bipolar sputtering mainly produces two phases, a transparent, nonconductive crystalline phase and a black, conductive amorphous phase. As a consequence, the dynamically sputtered samples are multilayers of these two materials. We discuss that the significantly better electrical and photoelectrochemical properties emerge from the inhomogeneous nature of the laminates, like also found in core-shell nanoparticles of B-TiO2.

2.
ACS Appl Mater Interfaces ; 13(20): 24130-24137, 2021 May 26.
Article in English | MEDLINE | ID: mdl-33974398

ABSTRACT

Radiative cooling to subambient temperatures can be efficiently achieved through spectrally selective emission, which until now has only been realized by using complex nanoengineered structures. Here, a simple dip-coated planar polymer emitter derived from polysilazane, which exhibits strong selective emissivity in the atmospheric transparency window of 8-13 µm, is demonstrated. The 5 µm thin silicon oxycarbonitride coating has an emissivity of 0.86 in this spectral range because of alignment of the frequencies of bond vibrations arising from the polymer. Furthermore, atmospheric heat absorption is suppressed due to its low emissivity outside the atmospheric transparency window. The reported structure with the highly transparent polymer and underlying silver mirror reflects 97% of the incoming solar irradiation. A temperature reduction of 6.8 °C below ambient temperature was achieved by the structure under direct sunlight, yielding a cooling power of 93.7 W m-2. The structural simplicity, durability, easy applicability, and high selectivity make polysilazane a unique emitter for efficient prospective passive daytime radiative cooling structures.

3.
RSC Adv ; 9(1): 107-113, 2018 Dec 19.
Article in English | MEDLINE | ID: mdl-35521563

ABSTRACT

In this work a vapor-phase-assisted approach for the synthesis of monolayer MoS2 is demonstrated, based on the sulfurization of thin MoO3-x precursor films in an H2S atmosphere. We discuss the co-existence of various possible growth mechanisms, involving solid-gas and vapor-gas reactions. Different sequences were applied in order to control the growth mechanism and to obtain monolayer films. These variations include the sample temperature and a time delay for the injection of H2S into the reaction chamber. The optimized combination allows for tuning the process route towards the potentially more favorable vapor-gas reactions, leading to an improved material distribution on the substrate surface. Raman and photoluminescence (PL) spectroscopy confirm the formation of ultrathin MoS2 films on SiO2/Si substrates with a narrow thickness distribution in the monolayer range on length scales of a few millimeters. Best results are achieved in a temperature range of 950-1000 °C showing improved uniformity in terms of Raman and PL line shapes. The obtained films exhibit a PL yield similar to mechanically exfoliated monolayer flakes, demonstrating the high optical quality of the prepared layers.

4.
Opt Express ; 23(7): A254-62, 2015 Apr 06.
Article in English | MEDLINE | ID: mdl-25968791

ABSTRACT

Transmittance and conductivity are the key requirements for transparent electrodes. Many optoelectronic applications require additional features such as mechanical flexibility and cost-efficient fabrication at low temperatures. Here we demonstrate a simple method to fabricate high performance transparent electrodes that is based on perforation of thin silver layers using picosecond laser pulses. Transparent electrodes have been characterized optically and electrically in order to determine the influence of specific surface coverage. Special attention was paid to maintaining sufficient conductivity in the metal-free areas. As a result, transmittance of a much higher bandwidth was achieved as compared to unpatterned metal films. Transparent electrodes have been fabricated on glass and plastic foil, as well as wafer-based silicon heterojunction solar cells, demonstrating their applicability for most relevant cases.

5.
J Phys Chem Lett ; 5(19): 3302-6, 2014 Oct 02.
Article in English | MEDLINE | ID: mdl-26278435

ABSTRACT

Plasmonic and photonic light trapping structures can significantly improve the efficiency of solar cells. This work presents an experimental and computational comparison of identically shaped metallic (Ag) and nonmetallic (SiO2) nanoparticles integrated to the back contact of amorphous silicon solar cells. Our results show comparable performance for both samples, suggesting that minor influence arises from the nanoparticle material. Particularly, no additional beneficial effect of the plasmonic features due to metallic nanoparticles could be observed.

SELECTION OF CITATIONS
SEARCH DETAIL
...