Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurol ; 11: 557269, 2020.
Article in English | MEDLINE | ID: mdl-33424735

ABSTRACT

The incidence of autism spectrum disorders (ASD) and attention deficit hyperactivity disorder (ADHD), which frequently co-occur, are both rising. The causes of ASD and ADHD remain elusive, even as both appear to involve perturbation of the gut-brain-immune axis. CD103 is an integrin and E-cadherin receptor most prominently expressed on CD8 T cells that reside in gut, brain, and other tissues. CD103 deficiency is well-known to impair gut immunity and resident T cell function, but it's impact on neurodevelopmental disorders has not been examined. We show here that CD8 T cells influence neural progenitor cell function, and that CD103 modulates this impact both directly and potentially by controlling CD8 levels in brain. CD103 knockout (CD103KO) mice exhibited a variety of behavioral abnormalities, including superior cognitive performance coupled with repetitive behavior, aversion to novelty and social impairment in females, with hyperactivity with delayed learning in males. Brain protein markers in female and male CD103KOs coincided with known aspects of ASD and ADHD in humans, respectively. Surprisingly, CD103 deficiency also decreased age-related cognitive decline in both sexes, albeit by distinct means. Together, our findings reveal a novel role for CD103 in brain developmental function, and identify it as a unique factor linking ASD and ADHD etiology. Our data also introduce a new animal model of combined ASD and ADHD with associated cognitive benefits, and reveal potential therapeutic targets for these disorders and age-related cognitive decline.

2.
Cancer Immunol Immunother ; 63(9): 911-24, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24893855

ABSTRACT

BACKGROUND: Cancer vaccines reproducibly cure laboratory animals and reveal encouraging trends in brain tumor (glioma) patients. Identifying parameters governing beneficial vaccine-induced responses may lead to the improvement of glioma immunotherapies. CD103(+) CD8 T cells dominate post-vaccine responses in human glioma patients for unknown reasons, but may be related to recent thymic emigrant (RTE) status. Importantly, CD8 RTE metrics correlated with beneficial immune responses in vaccinated glioma patients. METHODS: We show by flow cytometry that murine and human CD103(+) CD8 T cells respond better than their CD103(-) counterparts to tumor peptide-MHC I (pMHC I) stimulation in vitro and to tumor antigens on gliomas in vivo. RESULTS: Glioma responsive T cells from mice and humans both exhibited intrinsic de-sialylation-affecting CD8 beta. Modulation of CD8 T cell sialic acid with neuraminidase and ST3Gal-II revealed de-sialylation was necessary and sufficient for promiscuous binding to and stimulation by tumor pMHC I. Moreover, de-sialylated status was required for adoptive CD8 T cells and lymphocytes to decrease GL26 glioma invasiveness and increase host survival in vivo. Finally, increased tumor ST3Gal-II expression correlated with clinical vaccine failure in a meta-analysis of high-grade glioma patients. CONCLUSIONS: Taken together, these findings suggest that de-sialylation of CD8 is required for hyper-responsiveness and beneficial anti-glioma activity by CD8 T cells. Because CD8 de-sialylation can be induced with exogenous enzymes (and appears particularly scarce on human T cells), it represents a promising target for clinical glioma vaccine improvement.


Subject(s)
Antigens, CD/immunology , Brain Neoplasms/therapy , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/pharmacology , Dendritic Cells/immunology , Glioma/therapy , Integrin alpha Chains/immunology , Animals , Antigens, CD/metabolism , Brain Neoplasms/immunology , Brain Neoplasms/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cancer Vaccines/immunology , Female , Glioblastoma/immunology , Glioblastoma/metabolism , Glioblastoma/therapy , Glioma/immunology , Glioma/metabolism , Humans , Immunotherapy, Adoptive/methods , Integrin alpha Chains/metabolism , Mice , Mice, Inbred C57BL , Neuraminidase/metabolism , Neuraminidase/pharmacology , Sialyltransferases/metabolism , Sialyltransferases/pharmacology , beta-Galactoside alpha-2,3-Sialyltransferase
3.
J Biol Chem ; 285(22): 17218-34, 2010 May 28.
Article in English | MEDLINE | ID: mdl-20356838

ABSTRACT

Our study of the mouse Ate1 arginyltransferase, a component of the N-end rule pathway, has shown that Ate1 pre-mRNA is produced from a bidirectional promoter that also expresses, in the opposite direction, a previously uncharacterized gene (Hu, R. G., Brower, C. S., Wang, H., Davydov, I. V., Sheng, J., Zhou, J., Kwon, Y. T., and Varshavsky, A. (2006) J. Biol. Chem. 281, 32559-32573). In this work, we began analyzing this gene, termed Dfa (divergent from Ate1). Mouse Dfa was found to be transcribed from both the bidirectional P(Ate1/Dfa) promoter and other nearby promoters. The resulting transcripts are alternatively spliced, yielding a complex set of Dfa mRNAs that are present largely, although not exclusively, in the testis. A specific Dfa mRNA encodes, via its 3'-terminal exon, a 217-residue protein termed Dfa(A). Other Dfa mRNAs also contain this exon. Dfa(A) is sequelogous (similar in sequence) to a region of the human/mouse HTEX4 protein, whose physiological function is unknown. We produced an affinity-purified antibody to recombinant mouse Dfa(A) that detected a 35-kDa protein in the mouse testis and in several cell lines. Experiments in which RNA interference was used to down-regulate Dfa indicated that the 35-kDa protein was indeed Dfa(A). Furthermore, Dfa(A) was present in the interchromatin granule clusters and was also found to bind to the Ggnbp1 gametogenetin-binding protein-1 and to the Abt1 activator of basal transcription that interacts with the TATA-binding protein. Given these results, RNA interference was used to probe the influence of Dfa levels in luciferase reporter assays. We found that Dfa(A) acts as a repressor of TATA-box transcriptional promoters.


Subject(s)
Aminoacyltransferases/metabolism , Gene Expression Regulation , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , TATA Box , TATA-Box Binding Protein/metabolism , Transcription Factors, General/metabolism , Amino Acid Sequence , Animals , Base Sequence , Chromatin/metabolism , Humans , Male , Mice , Molecular Sequence Data , Promoter Regions, Genetic , Repressor Proteins/genetics , Sequence Homology, Amino Acid , Testis/metabolism
4.
J Exp Clin Cancer Res ; 29: 10, 2010 Feb 09.
Article in English | MEDLINE | ID: mdl-20144232

ABSTRACT

SIAH proteins are the human members of an highly conserved family of E3 ubiquitin ligases. Several data suggest that SIAH proteins may have a role in tumor suppression and apoptosis. Previously, we reported that SIAH-1 induces the degradation of Kid (KIF22), a chromokinesin protein implicated in the normal progression of mitosis and meiosis, by the ubiquitin proteasome pathway. In human breast cancer cells stably transfected with SIAH-1, Kid/KIF22 protein level was markedly reduced whereas, the Kid/KIF22 mRNA level was increased. This interaction has been further elucidated through analyzing SIAH and Kid/KIF22 expression in both paired normal and tumor tissues and cell lines. It was observed that SIAH-1 protein is widely expressed in different normal tissues, and in cells lines but showing some differences in western blotting profiles. Immunofluorescence microscopy shows that the intracellular distribution of SIAH-1 and Kid/KIF22 appears to be modified in human tumor tissues compared to normal controls. When mRNA expression of SIAH-1 and Kid/KIF22 was analyzed by real-time PCR in normal and cancer breast tissues from the same patient, a large variation in the number of mRNA copies was detected between the different samples. In most cases, SIAH-1 mRNA is decreased in tumor tissues compared to their normal counterparts. Interestingly, in all breast tumor tissues analyzed, variations in the Kid/KIF22 mRNA levels mirrored those seen with SIAH-1 mRNAs. This concerted variation of SIAH-1 and Kid/KIF22 messengers suggests the existence of an additional level of control than the previously described protein-protein interaction and protein stability regulation. Our observations also underline the need to re-evaluate the results of gene expression obtained by qRT-PCR and relate it to the protein expression and cellular localization when matched normal and tumoral tissues are analyzed.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast/metabolism , DNA-Binding Proteins/metabolism , Kinesins/metabolism , Nuclear Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Adult , Aged , Aged, 80 and over , Cell Line, Tumor , Female , Humans , Middle Aged , Nuclear Proteins/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...