Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microsc Res Tech ; 50(5): 394-402, 2000 Sep 01.
Article in English | MEDLINE | ID: mdl-10941175

ABSTRACT

The inner plexiform layer of the retina is a synaptic layer mostly devoid of perikarya. It contains the processes of three major neuron types: the bipolar cells, which carry information from the photoreceptors, the ganglion cells, which are the output elements of the retina, and the amacrine cells, which are able to influence the communication between the former two. Since amacrine cells are the most diverse retinal neurons, they are in a position to carve out and delineate the neural circuits of the inner retina. The aim of this review is to offer a summary of findings related to the general synaptology of the inner retina in frogs and also to provide some insight into the synaptic organization of neurochemically identified amacrine cells. The main conclusions of this paper are as follows: (i) Most contacts are formed between amacrine cells. (2) Direct bipolar to ganglion cell synapses exist, but are rare in the anuran retina. (3) All neurochemically identified amacrine cell types receive inputs from bipolar cells, but not all of them form reciprocal contacts with bipolar cell axon terminals. (4) A major inhibitory transmitter, gamma-aminobutyric acid, is involved in more than 50% of the synapses. Since contacts between inhibitory elements were often observed, disinhibitory circuits must also play a role in retinal information processing. (5) Reciprocal relationship between dopaminergic and gamma-aminobutyric acid-containing cells have been confirmed. Similar situation was observed in case of serotoninergic and gamma-aminobutyric acid-positive elements. No contacts were verified between serotoninergic and dopaminergic elements. (6) Both monoamine- and neuropeptide-containing amacrine cells establish direct contacts with ganglion cell dendrites, providing a morphological basis for neuromodulatory influence on the output elements of the retina. Unfortunately, only a handful of studies have been carried out to identify the synaptic connections between neurochemically identified cells in the anuran retina. Double-label studies at the electron microscope level to reveal the synaptic relationship of cell populations containing two different transmitters/modulators are extremely rare. Further insight into retinal synaptic circuitries could be gained with a combination of electrophysiology and morphology at the electron microscopic level. These studies must also involve identification of the transmitter receptors on identified cell types. Only after this step can the function of different synaptic circuitries be better approximated.


Subject(s)
Anura/anatomy & histology , Retina , Synapses , Animals , Anura/physiology , Dopamine/metabolism , Ganglia, Sensory/physiology , Ganglia, Sensory/ultrastructure , Neurons/physiology , Neurons/ultrastructure , Neuropeptides/metabolism , Retina/cytology , Retina/physiology , Retina/ultrastructure , Serotonin/metabolism , Synapses/physiology , Synapses/ultrastructure , gamma-Aminobutyric Acid/metabolism
2.
J Neurosci Res ; 61(1): 107-15, 2000 Jul 01.
Article in English | MEDLINE | ID: mdl-10861806

ABSTRACT

The postnatal developmental distribution pattern of metabotropic glutamate receptor (mGluR1a) immunoreactive unipolar brush cells (UBCs) was studied in the cerebellar cortex of kittens. On the day of birth (P0) UBCs are already present in the white matter in lobule X of the vermis, but only a few of these cell seemed to migrate to the deeper region of the internal granular layer. By the end of the first week (P8) UBCs were seen to invade the white matter + internal granular layer of lobules IX, VIII, I, and II of the vermis, and they spread further in the transitory area medio-laterally from the vermis toward the cerebellar hemispheres. By P15, UBCs appeared in lobules III and VII of the vermis, as well as in corresponding lobules of the neocerebellum, with especially high numbers in lobule VII. By P22, UBCs migrated further after their medio-lateral course in the neocerebellum, and began to invade lobules V and VI. At P62 the amount of UBCs in midsagittal planes of early developing vermal lobules (I, II, VII-X) resembled the P132 or adult pattern. The medio-lateral migration and incorporation of UBCs into the late-developing cerebellar lobules V and VI was completed only by P132, when the spatial distribution of UBCs in both the vermal and neocerebellar lobules was comparable to that seen in the 1 year old young adult cat. Although by P132 the postnatal migration of the vast majority of UBCs seemed to be completed, in the cerebellum of adult cats a few migrating UBCs could still be observed in the white matter of the cerebellar lobules, and beneath the ependyma of the fourth ventricle. It is concluded that during ontogenesis the migration course of UBCs follows essentially the developmental sequence of cerebellar lobules, although the incorporation of UBCs into the internal granular layer continues until 4 months postnatally, i.e., much beyond the apparent completion (about two months postnatally) of cytoarchitectonic built up of the cerebellar cortex of kittens.


Subject(s)
Cell Movement/physiology , Cerebellar Cortex/cytology , Cerebellar Cortex/growth & development , Neurons/cytology , Animals , Cats , Cell Count , Female , Male , Receptors, Metabotropic Glutamate/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...