Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Microbiologyopen ; 13(2): e1401, 2024 04.
Article in English | MEDLINE | ID: mdl-38409911

ABSTRACT

Prevotella intermedia, a Gram-negative bacterium from the Bacteroidota phylum, is associated with periodontitis. Other species within this phylum are known to possess the general O-glycosylation system. The O-glycoproteome has been characterized in several species, including Tannerella forsythia, Porphyromonas gingivalis, and Flavobacterium johnsoniae. In our study, we used electron cryotomography (cryoET) and glycoproteomics to reveal the ultrastructure of P. intermedia and characterize its O-glycoproteome. Our cryoET analysis unveiled the ultrastructural details of the cell envelope and outer membrane vesicles (OMVs) of P. intermedia. We observed an electron-dense surface layer surrounding both cells and OMVs. The OMVs were often large (>200 nm) and presented two types, with lumens being either electron-dense or translucent. LC-MS/MS analyses of P. intermedia fractions led to the identification of 1655 proteins, which included 62 predicted T9SS cargo proteins. Within the glycoproteome, we identified 443 unique O-glycosylation sites within 224 glycoproteins. Interestingly, the O-glycosylation motif exhibited a broader range than reported in other species, with O-glycosylation found at D(S/T)(A/I/L/M/T/V/S/C/G/F/N/E/Q/D/P). We identified a single O-glycan with a delta mass of 1531.48 Da. Its sequence was determined by MS2 and MS3 analyses using both collision-induced dissociation and high-energy collisional dissociation fragmentation modes. After partial deglycosylation with trifluoromethanesulfonic acid, the O-glycan sequence was confirmed to be dHex-dHex-HexNAc (HPO3 -C6 H12 O5 )-dHex-Hex-HexA-Hex(dHex). Bioinformatic analyses predicted the localization of O-glycoproteins, with 73 periplasmic proteins, 53 inner membrane proteins, 52 lipoproteins, 26 outer membrane proteins, and 14 proteins secreted by the T9SS.


Subject(s)
Glycoproteins , Tandem Mass Spectrometry , Glycosylation , Prevotella intermedia/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry/methods , Membrane Proteins/metabolism , Proteome/metabolism , Polysaccharides
2.
J Bacteriol ; 205(6): e0009323, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37162352

ABSTRACT

Flavobacterium johnsoniae is a free-living member of the Bacteroidota phylum that is found in soil and water. It is frequently used as a model species for studying a type of gliding motility dependent on the type IX secretion system (T9SS). O-Glycosylation has been reported in several Bacteroidota species, and the O-glycosylation of S-layer proteins in Tannerella forsythia was shown to be important for certain virulence features. In this study, we characterized the O-glycoproteome of F. johnsoniae and identified 325 O-glycosylation sites within 226 glycoproteins. The structure of the major glycan was found to be a hexasaccharide with the sequence Hex-(Me-dHex)-Me-HexA-Pent-HexA-Me-HexNAcA. Bioinformatic localization of the glycoproteins predicted 68 inner membrane proteins, 60 periplasmic proteins, 26 outer membrane proteins, 57 lipoproteins, and 9 proteins secreted by the T9SS. The glycosylated sites were predominantly located in the periplasm, where they are postulated to be beneficial for protein folding/stability. Six proteins associated with gliding motility or the T9SS were demonstrated to be O-glycosylated. IMPORTANCE Flavobacterium johnsoniae is a Gram-negative bacterium that is found in soil and water. It is frequently used as a model species for studying gliding motility and the T9SS. In this study, we characterized the O-glycoproteome of F. johnsoniae and identified 325 O-glycosylation sites within 226 glycoproteins. The glycosylated domains were mainly localized to the periplasm. The function of O-glycosylation is likely related to protein folding and stability; therefore, the finding of the glycosylation sites has relevance for studies involving expression of the proteins. Six proteins associated with gliding motility or the T9SS were demonstrated to be O-glycosylated, which may impact the structure and function of these components.


Subject(s)
Bacterial Proteins , Flavobacterium , Bacterial Proteins/metabolism , Flavobacterium/genetics , Polysaccharides/metabolism , Glycosylation , Proteome
3.
Mol Oral Microbiol ; 38(1): 34-40, 2023 02.
Article in English | MEDLINE | ID: mdl-35862235

ABSTRACT

Porphyromonas gingivalis is an anaerobic Gram-negative human oral pathogen highly associated with the more severe forms of periodontal disease. Porphyromonas gingivalis utilises the type IX secretion system (T9SS) to transport ∼30 cargo proteins, including multiple virulence factors, to the cell surface. The T9SS is a multiprotein system consisting of at least 20 proteins, and recently, we characterised the protein interactome of these components. Similar to the T9SS, almost all biological processes are mediated through protein-protein interactions (PPIs). Therefore, mapping PPIs is important to understand the biological functions of many proteins in P. gingivalis. Herein, we provide native migration profiles of over 1000 P. gingivalis proteins. Using the T9SS, we demonstrate that our dataset is a useful resource for identifying novel protein interactions. Using this dataset and further analysis of T9SS P. gingivalis mutants, we discover new mechanistic insights into the formation of the PorQ-Z complex of the T9SS. This dataset is a valuable resource for studies of P. gingivalis.


Subject(s)
Bacterial Proteins , Porphyromonas gingivalis , Humans , Bacterial Proteins/metabolism , Adhesins, Bacterial/metabolism , Virulence Factors/metabolism , Cell Membrane/metabolism , Bacterial Secretion Systems/metabolism
4.
Int J Mol Sci ; 23(10)2022 May 19.
Article in English | MEDLINE | ID: mdl-35628493

ABSTRACT

The Bacteroidetes type IX secretion system (T9SS) consists of at least 20 components that translocate proteins with type A or type B C-terminal domain (CTD) signals across the outer membrane (OM). While type A CTD proteins are anchored to the cell surface via covalent linkage to the anionic lipopolysaccharide, it is still unclear how type B CTD proteins are anchored to the cell surface. Moreover, very little is known about the PorE and PorP components of the T9SS. In this study, for the first time, we identified a complex comprising the OM ß-barrel protein PorP, the OM-associated periplasmic protein PorE and the type B CTD protein PG1035. Cross-linking studies supported direct interactions between PorE-PorP and PorP-PG1035. Furthermore, we show that the formation of the PorE-PorP-PG1035 complex was independent of PorU and PorV. Additionally, the Flavobacterium johnsoniae PorP-like protein, SprF, was found bound to the major gliding motility adhesin, SprB, which is also a type B CTD protein. Together, these results suggest that type B-CTD proteins may anchor to the cell surface by binding to their respective PorP-like proteins.


Subject(s)
Bacterial Proteins , Bacterial Secretion Systems , Adhesins, Bacterial/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Secretion Systems/metabolism , Biological Transport , Membrane Proteins/metabolism , Protein Transport
5.
Microbiol Spectr ; 10(1): e0150221, 2022 02 23.
Article in English | MEDLINE | ID: mdl-34985300

ABSTRACT

Porphyromonas gingivalis is an important human pathogen and also a model organism for the Bacteroidetes phylum. O-glycosylation has been reported in this phylum with findings that include the O-glycosylation motif, the structure of the O-glycans in a few species, and an extensive O-glycoproteome analysis in Tannerella forsythia. However, O-glycosylation has not yet been confirmed in P. gingivalis. We therefore used glycoproteomics approaches including partial deglycosylation with trifluoromethanesulfonic acid as well as both HILIC and FAIMS based glycopeptide enrichment strategies leading to the identification of 257 putative glycosylation sites in 145 glycoproteins. The sequence of the major O-glycan was elucidated to be HexNAc-HexNAc(P-Gro-[Ac]0-2)-dHex-Hex-HexA-Hex(dHex). Western blot analyses of mutants lacking the glycosyltransferases PGN_1134 and PGN_1135 demonstrated their involvement in the biosynthesis of the glycan while mass spectrometry analysis of the truncated O-glycans suggested that PGN_1134 and PGN_1135 transfer the two HexNAc sugars. Interestingly, a strong bias against the O-glycosylation of abundant proteins exposed to the cell surface such as abundant T9SS cargo proteins, surface lipoproteins, and outer membrane ß-barrel proteins was observed. In contrast, the great majority of proteins associated with the inner membrane or periplasm were glycosylated irrespective of their abundance. The P. gingivalis O-glycosylation system may therefore function to establish the desired physicochemical properties of the periplasm. IMPORTANCE Porphyromonas gingivalis is an oral pathogen primarily associated with severe periodontal disease and further associated with rheumatoid arthritis, dementia, cardiovascular disease, and certain cancers. Protein glycosylation can be important for a variety of reasons including protein function, solubility, protease resistance, and thermodynamic stability. This study has for the first time demonstrated the presence of O-linked glycosylation in this organism by determining the basic structure of the O-glycans and identifying 257 glycosylation sites in 145 proteins. It was found that most proteins exposed to the periplasm were O-glycosylated; however, the abundant surface exposed proteins were not. The O-glycans consisted of seven monosaccharides and a glycerol phosphate with 0-2 acetyl groups. These glycans are likely to have a stabilizing role to the proteins that bear them and must be taken into account when the proteins are produced in heterologous organisms.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Glycoproteins/chemistry , Glycoproteins/metabolism , Porphyromonas gingivalis/metabolism , Amino Acid Motifs , Bacterial Proteins/genetics , Carbohydrate Sequence , Glycoproteins/genetics , Glycosylation , Humans , Polysaccharides/chemistry , Polysaccharides/metabolism , Porphyromonas gingivalis/chemistry , Porphyromonas gingivalis/genetics
6.
Microbiol Spectr ; 10(1): e0160221, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35019767

ABSTRACT

The type IX secretion system (T9SS) transports cargo proteins through the outer membrane of Bacteroidetes and attaches them to the cell surface for functions including pathogenesis, gliding motility, and degradation of carbon sources. The T9SS comprises at least 20 different proteins and includes several modules: the trans-envelope core module comprising the PorL/M motor and the PorK/N ring, the outer membrane Sov translocon, and the cell attachment complex. However, the spatial organization of these modules is unknown. We have characterized the protein interactome of the Sov translocon in Porphyromonas gingivalis and identified Sov-PorV-PorA as well as Sov-PorW-PorN-PorK to be novel networks. PorW also interacted with PGN_1783 (PorD), which was required for maximum secretion efficiency. The identification of PorW as the missing link completes a continuous interaction network from the PorL/M motor to the Sov translocon, providing a pathway for cargo delivery and energy transduction from the inner membrane to the secretion pore. IMPORTANCE The T9SS is a newly identified protein secretion system of the Fibrobacteres-Chlorobi-Bacteroidetes superphylum used by pathogens associated with diseases of humans, fish, and poultry for the secretion and cell surface attachment of virulence factors. The T9SS comprises three known modules: (i) the trans-envelope core module comprising the PorL/M motor and the PorK/N ring, (ii) the outer membrane Sov translocon, and (iii) the cell surface attachment complex. The spatial organization and interaction of these modules have been a mystery. Here, we describe the protein interactome of the Sov translocon in the human pathogen Porphyromonas gingivalis and have identified PorW as the missing link which bridges PorN with Sov and so completes a continuous interaction network from the PorL/M motor to the Sov translocon, providing, for the first time, a pathway for cargo delivery and energy transduction from the inner membrane to the secretion pore.


Subject(s)
Bacterial Proteins/metabolism , Bacterial Secretion Systems/metabolism , Porphyromonas gingivalis/metabolism , Amino Acid Sequence , Bacterial Outer Membrane/chemistry , Bacterial Outer Membrane/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Secretion Systems/chemistry , Bacterial Secretion Systems/genetics , Porphyromonas gingivalis/chemistry , Porphyromonas gingivalis/genetics , Protein Binding , Protein Transport , Sequence Alignment
7.
mSphere ; 6(5): e0064921, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34523981

ABSTRACT

Tannerella forsythia is a Gram-negative oral pathogen known to possess an O-glycosylation system responsible for targeting multiple proteins associated with virulence at the three-residue motif (D)(S/T)(A/I/L/V/M/T). Multiple proteins have been identified to be decorated with a decasaccharide glycan composed of a poorly defined core plus a partially characterized species-specific section. To date, glycosylation studies have focused mainly on the two S-layer glycoproteins, TfsA and TfsB, so the true extent of glycosylation within this species has not been fully explored. In the present study, we characterize the glycoproteome of T. forsythia by employing FAIMS-based glycopeptide enrichment of a cell membrane fraction. We demonstrate that at least 13 glycans are utilized within the T. forsythia glycoproteome, varying with respect to the presence of the three terminal sugars and the presence of fucose and digitoxose residues at the reducing end. To improve the localization of glycosylation events and enhance the detection of glycopeptides, we utilized trifluoromethanesulfonic acid treatment to allow the selective chemical cleavage of glycans. Reducing the chemical complexity of glycopeptides dramatically improved the number of glycopeptides identified and our ability to localize glycosylation sites by ETD fragmentation, leading to the identification of 312 putative glycosylation sites in 145 glycoproteins. Glycosylation site analysis revealed that glycosylation occurs on a much broader motif than initially reported, with glycosylation found at (D)(S/T)(A/I/L/V/M/T/S/C/G/F). The prevalence of this broader glycosylation motif in the genome suggests the existence of hundreds of potential O-glycoproteins in this organism. IMPORTANCE Tannerella forsythia is an oral pathogen associated with severe forms of periodontal disease characterized by destruction of the tooth's supporting tissues, including the bone. The bacterium releases a variety of proteins associated with virulence on the surface of outer membrane vesicles. There is evidence that these proteins are modified by glycosylation, and this modification is essential for virulence in producing disease. We have utilized novel techniques coupled with mass spectrometry to identify over 13 glycans and 312 putative glycosylation sites in 145 glycoproteins within T. forsythia. Glycosylation site analysis revealed that this modification occurs on a much broader motif than initially reported such that there is a high prevalence of potential glycoproteins in this organism that may help to explain its role in periodontal disease.


Subject(s)
Bacterial Proteins/metabolism , Glycoproteins/metabolism , Membrane Glycoproteins/metabolism , Proteome/metabolism , Tannerella forsythia/metabolism , Bacterial Proteins/chemistry , Glycosylation , Mass Spectrometry , Membrane Glycoproteins/chemistry , Mesylates/pharmacology , Protein Transport , Tannerella forsythia/drug effects , Tannerella forsythia/genetics , Tannerella forsythia/pathogenicity , Virulence
8.
J Bacteriol ; 203(10)2021 04 21.
Article in English | MEDLINE | ID: mdl-33685973

ABSTRACT

Porphyromonas gingivalis, a bacterial pathogen contributing to human periodontitis, exports and anchors cargo proteins to its surface, enabling the production of black pigmentation using a type IX secretion system (T9SS) and conjugation to anionic lipopolysaccharide (A-LPS). To determine whether T9SS components need to be assembled in situ for correct secretion and A-LPS modification of cargo proteins, combinations of nonpigmented mutants lacking A-LPS or a T9SS component were mixed to investigate in trans complementation. Reacquisition of pigmentation occurred only between an A-LPS mutant and a T9SS mutant, which coincided with A-LPS modification of cargo proteins detected by Western blotting and coimmunoprecipitation/quantitative mass spectrometry. Complementation also occurred using an A-LPS mutant mixed with outer membrane vesicles (OMVs) or purified A-LPS. Fluorescence experiments demonstrated that OMVs can fuse with and transfer lipid to P. gingivalis, leading to the conclusion that complementation of T9SS function occurred through A-LPS transfer between cells. None of the two-strain crosses involving only the five T9SS OM component mutants produced black pigmentation, implying that the OM proteins cannot be transferred in a manner that restores function and surface pigmentation, and hence, a more ordered temporal in situ assembly of T9SS components may be required. Our results show that LPS can be transferred between cells or between cells and OMVs to complement deficiencies in LPS biosynthesis and hemin-related pigmentation to reveal a potentially new mechanism by which the oral microbial community is modulated to produce clinical consequences in the human host.IMPORTANCEPorphyromonas gingivalis is a keystone pathogen contributing to periodontitis in humans, leading to tooth loss. The oral microbiota is essential in this pathogenic process and changes from predominantly Gram-positive (health) to predominantly Gram-negative (disease) species. P. gingivalis uses its type IX secretion system (T9SS) to secrete and conjugate virulence proteins to anionic lipopolysaccharide (A-LPS). This study investigated whether components of this secretion system could be complemented and found that it was possible for A-LPS biosynthetic mutants to be complemented in trans both by strains that had the A-LPS on the cell surface and by exogenous sources of A-LPS. This is the first known example of LPS exchange in a human bacterial pathogen which causes disease through complex microbiota-host interactions.


Subject(s)
Bacterial Proteins/metabolism , Bacterial Secretion Systems/metabolism , Lipopolysaccharides/metabolism , Porphyromonas gingivalis/metabolism , Bacterial Outer Membrane/metabolism , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Secretion Systems/genetics , Lipopolysaccharides/biosynthesis , Lipopolysaccharides/genetics , Mutation , Pigmentation/genetics , Porphyromonas gingivalis/genetics
9.
Mol Oral Microbiol ; 36(1): 25-36, 2021 02.
Article in English | MEDLINE | ID: mdl-33124778

ABSTRACT

Porphyromonas gingivalis is a Gram-negative anaerobic pathogen found in subgingival plaque associated with progressive periodontitis. Proteins associated with the outer membrane (OM) of Gram-negative pathogens are particularly important for understanding virulence and for developing vaccines. The aim of this study was to establish a reliable list of outer membrane associated proteins (Omps) for this organism. Starting with a list of 99 experimentally determined Omps, several bioinformatics tools were used to predict a further 52 proteins, leading to a predicted OM proteome of 151 proteins. The tools used included databases of protein families, prediction of OM ß-barrels and structural homology. The list includes 33 T9SS cargo proteins, 43 lipoproteins and 66 OM ß-barrel proteins with some overlap between categories. The proteins are discussed both in these structural categories as well as their various functions in OM biogenesis, nutrient acquisition, protein secretion, adhesion and efflux. Proteins that were previously shown to be part of large complexes are highlighted and cross reference is provided to a previous major study of protein localization in P. gingivalis. Finally, proteins were also scored according to their level of conservation within the Bacteroidales taxon. Low scores were shown to correlate with virulence factors and may be predictive of novel virulence factors.


Subject(s)
Porphyromonas gingivalis , Proteome , Bacterial Outer Membrane Proteins , Bacteroidetes , Humans , Virulence , Virulence Factors
10.
Methods Mol Biol ; 2210: 113-121, 2021.
Article in English | MEDLINE | ID: mdl-32815132

ABSTRACT

The type IX secretion system (T9SS) is the most recently discovered secretion system in the gram-negative bacteria and is specific to the Bacteroidetes phylum. It is comprised of at least 19 proteins, which together allows for the secretion and cell surface attachment of a specific group of proteins (T9SS substrates), that harbor a signal sequence at the C-terminus. Here we describe the structural characterization of the PorK, PorN and PorG components of the Porphyromonas gingivalis T9SS using electron microscopy and cross-linking mass spectrometry.


Subject(s)
Bacterial Secretion Systems/metabolism , Porphyromonas gingivalis/metabolism , Adhesins, Bacterial/genetics , Adhesins, Bacterial/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Secretion Systems/genetics , Mass Spectrometry/methods , Microscopy, Electron/methods , Porphyromonas gingivalis/genetics , Protein Sorting Signals/genetics
11.
mBio ; 11(5)2020 09 01.
Article in English | MEDLINE | ID: mdl-32873758

ABSTRACT

Porphyromonas gingivalis and Tannerella forsythia use the type IX secretion system to secrete cargo proteins to the cell surface where they are anchored via glycolipids. In P. gingivalis, the glycolipid is anionic lipopolysaccharide (A-LPS), of partially known structure. Modified cargo proteins were deglycosylated using trifluoromethanesulfonic acid and digested with trypsin or proteinase K. The residual modifications were then extensively analyzed by tandem mass spectrometry. The C terminus of each cargo protein was amide-bonded to a linking sugar whose structure was deduced to be 2-N-seryl, 3-N-acetylglucuronamide in P. gingivalis and 2-N-glycyl, 3-N-acetylmannuronic acid in T. forsythia The structures indicated the involvement of the Wbp pathway to produce 2,3-di-N-acetylglucuronic acid and a WbpS amidotransferase to produce the uronamide form of this sugar in P. gingivalis The wbpS gene was identified as PGN_1234 as its deletion resulted in the inability to produce the uronamide. In addition, the P. gingivalisvimA mutant which lacks A-LPS was successfully complemented by the T. forsythiavimA gene; however, the linking sugar was altered to include glycine rather than serine. After removal of the acetyl group at C-2 by the putative deacetylase, VimE, VimA presumably transfers the amino acid to complete the biosynthesis. The data explain all the enzyme activities required for the biosynthesis of the linking sugar accounting for six A-LPS-specific genes. The linking sugar is therefore the key compound that enables the attachment of cargo proteins in P. gingivalis and T. forsythia We propose to designate this novel linking sugar biosynthetic pathway the Wbp/Vim pathway.IMPORTANCEPorphyromonas gingivalis and Tannerella forsythia, two pathogens associated with severe gum disease, use the type IX secretion system (T9SS) to secrete and attach toxic arrays of virulence factor proteins to their cell surfaces. The proteins are tethered to the outer membrane via glycolipid anchors that have remained unidentified for more than 2 decades. In this study, the first sugar molecules (linking sugars) in these anchors are identified and found to be novel compounds. The novel biosynthetic pathway of these linking sugars is also elucidated. A diverse range of bacteria that do not have the T9SS were found to have the genes for this pathway, suggesting that they may synthesize similar linking sugars for utilization in different systems. Since the cell surface attachment of virulence factors is essential for virulence, these findings reveal new targets for the development of novel therapies.


Subject(s)
Bacterial Secretion Systems/metabolism , Biosynthetic Pathways , Porphyromonas gingivalis/metabolism , Tannerella forsythia/metabolism , Bacterial Secretion Systems/genetics , Glycosylation , Lipopolysaccharides/analysis , Lipopolysaccharides/chemistry , Mass Spectrometry , Porphyromonas gingivalis/genetics , Protein Transport , Sugars/chemistry , Tannerella forsythia/genetics
12.
Microorganisms ; 8(8)2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32752268

ABSTRACT

The type IX secretion system (T9SS) is specific to the Bacteroidetes phylum. Porphyromonas gingivalis, a keystone pathogen for periodontitis, utilises the T9SS to transport many proteins-including its gingipain virulence factors-across the outer membrane and attach them to the cell surface. Additionally, the T9SS is also required for gliding motility in motile organisms, such as Flavobacterium johnsoniae. At least nineteen proteins have been identified as components of the T9SS, including the three transcription regulators, PorX, PorY and SigP. Although the components are known, the overall organisation and the molecular mechanism of how the T9SS operates is largely unknown. This review focusses on the recent advances made in the structure, function, and organisation of the T9SS machinery to provide further insight into this highly novel secretion system.

13.
Mol Oral Microbiol ; 35(2): 78-84, 2020 04.
Article in English | MEDLINE | ID: mdl-32040252

ABSTRACT

Porphyromonas gingivalis is an anaerobic, gram-negative human oral pathogen highly associated with chronic periodontitis. P. gingivalis utilizes the type IX secretion system (T9SS) to transport many of its virulence factors including the gingipains to the cell surface. The T9SS is comprised of at least 16 proteins and the involvement of these 16 proteins in the T9SS has been verified by creating gene deletion mutants in P. gingivalis. These T9SS mutants are regularly utilized to understand how these proteins function together to allow the secretion of the T9SS substrates. We performed label-free quantitative proteomic analysis on the T9SS protein mutants in P. gingivalis to understand the relative abundance of each T9SS component in different mutants. The T9SS components were reduced in abundance in the porK, porL, porM, porN, sov and porT mutants, whereas they were increased in the porE, porU, porV, porZ and porQ mutants. Sov and PorW appear to be the lowest in abundance and PorV the highest amongst all the T9SS components in P. gingivalis wild-type strain. These results are consistent with the proposed role of Sov as the translocation pore in the outer membrane and PorV as the shuttle protein that transports the T9SS substrates between sub-complexes. Together, the label-free quantitative proteomics analyses showed that different T9SS mutants have vastly different abundances of the T9SS components. This knowledge will greatly assist in interpreting the phenotype of the T9SS mutants as well as selecting the right mutant for exploring the role of an individual component.


Subject(s)
Porphyromonas gingivalis , Adhesins, Bacterial , Bacterial Proteins/genetics , Bacterial Secretion Systems/genetics , Humans , Porphyromonas gingivalis/genetics , Proteomics , Virulence Factors/genetics
14.
Cytokine ; 119: 24-31, 2019 07.
Article in English | MEDLINE | ID: mdl-30856602

ABSTRACT

IL-36 cytokines are critical regulators of mucosal inflammation and homeostasis. IL-36γ regulates the expression of inflammatory cytokines and antimicrobial proteins by gingival epithelial cells (e.g. TIGK cells). Here, we show that IL-36γ also regulates the expression of matrix metalloproteinase 9 (MMP9) and neutrophil gelatinase-associated lipocalin (NGAL), important mediators of antimicrobial immunity and tissue homeostasis in mucosal epithelia. MMP9 and NGAL were not similarly induced by IL-17 or IL-22, thus indicating the importance of IL-36γ in the regulation of MMP9 and NGAL. Mechanistically, MMP9 and NGAL expression was demonstrated to be induced in an IRAK1- and NF-κB-dependent manner. Furthermore, signaling by p38 MAP kinase may enable their expression to be independently regulated by IL-36γ. The stronger IL-36γ-inducible expression of MMP9 and NGAL in terminally differentiating TIGK cells suggests that control of their expression is associated with the maturation of the gingival epithelium. Although MMP9 and NGAL expression in epithelial cells can also be induced by bacteria, their expression in TIGK cells was not induced by the periodontal pathogen Porphyromonas gingivalis, most likely due to antagonism by the gingipain proteinase virulence factors. This study advances our understanding of how IL-36γ may promote oral mucosal immunity and tissue homeostasis, and how this may be dysregulated by bacterial pathogens.


Subject(s)
Epithelial Cells/metabolism , Homeostasis/physiology , Interleukin-1/metabolism , Bacteroidaceae Infections , Cells, Cultured , Epithelial Cells/microbiology , Gingiva/metabolism , Gingiva/microbiology , Humans , Interleukin-17/metabolism , Lipocalin-2/metabolism , Matrix Metalloproteinase 9/metabolism , Mouth Mucosa/metabolism , Mouth Mucosa/microbiology , Porphyromonas gingivalis/metabolism , Virulence Factors/metabolism
15.
J Proteome Res ; 18(4): 1567-1581, 2019 04 05.
Article in English | MEDLINE | ID: mdl-30761904

ABSTRACT

The identification and localization of outer membrane proteins (Omps) and lipoproteins in pathogenic treponemes such as T. denticola (periodontitis) and T. pallidum (syphilis) has been challenging. In this study, label-free quantitative proteomics using MaxQuant was applied to naturally produced outer membrane vesicles (OMVs) and cellular fractions to identify 1448 T. denticola proteins. Of these, 90 proteins were localized to the outer membrane (OM) comprising 59 lipoproteins, 25 ß-barrel proteins, and six other putative OM-associated proteins. Twenty-eight lipoproteins were localized to the inner membrane (IM), and 43 proteins were assigned to the periplasm. The signal cleavage regions of the OM and IM lipoprotein sequences were different and may reveal the signals for their differential localization. Proteins significantly enriched in OMVs included dentilisin, proteins containing leucine-rich repeats, and several lipoproteins containing FGE-sulfatase domains. Blue native PAGE analysis enabled the native size of the dentilisin complex and Msp to be determined and revealed that the abundant ß-barrel Omps TDE2508 and TDE1717 formed large complexes. In addition to the large number of integral Omps and potentially surface-located lipoproteins identified in T. denticola, many such proteins were also newly identified in T. pallidum through homology, generating new targets for vaccine development in both species.


Subject(s)
Bacterial Outer Membrane Proteins/analysis , Proteome/analysis , Treponema denticola , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/analysis , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Lipoproteins/analysis , Lipoproteins/chemistry , Lipoproteins/metabolism , Peptide Hydrolases/analysis , Peptide Hydrolases/chemistry , Peptide Hydrolases/metabolism , Periplasm/chemistry , Proteome/chemistry , Proteome/metabolism , Proteomics , Treponema denticola/chemistry , Treponema denticola/cytology
16.
Article in English | MEDLINE | ID: mdl-31921707

ABSTRACT

Chronic periodontitis has a polymicrobial biofilm etiology and interactions between key oral bacterial species, such as Porphyromonas gingivalis and Treponema denticola contribute to disease progression. P. gingivalis and T. denticola are co-localized in subgingival plaque and have been previously shown to exhibit strong synergy in growth, biofilm formation and virulence in an animal model of disease. The motility of T. denticola, although not considered as a classic virulence factor, may be involved in synergistic biofilm development between P. gingivalis and T. denticola. We determined the role of T. denticola motility in polymicrobial biofilm development using an optimized transformation protocol to produce two T. denticola mutants targeting the motility machinery. These deletion mutants were non-motile and lacked the gene encoding the flagellar hook protein of the periplasmic flagella (ΔflgE) or a component of the stator motor that drives the flagella (ΔmotB). The specificity of these gene deletions was determined by whole genome sequencing. Quantitative proteomic analyses of mutant strains revealed that the specific inactivation of the motility-associated gene, motB, had effects beyond motility. There were 64 and 326 proteins that changed in abundance in the ΔflgE and ΔmotB mutants, respectively. In the ΔflgE mutant, motility-associated proteins showed the most significant change in abundance confirming the phenotype change for the mutant was related to motility. However, the inactivation of motB as well as stopping motility also upregulated cellular stress responses in the mutant indicating pleiotropic effects of the mutation. T. denticola wild-type and P. gingivalis displayed synergistic biofilm development with a 2-fold higher biomass of the dual-species biofilms than the sum of the monospecies biofilms. Inactivation of T. denticola flgE and motB reduced this synergy. A 5-fold reduction in dual-species biofilm biomass was found with the motility-specific ΔflgE mutant suggesting that T. denticola periplasmic flagella are essential in synergistic biofilm formation with P. gingivalis.


Subject(s)
Bacterial Proteins/genetics , Biofilms/growth & development , Porphyromonas gingivalis/growth & development , Treponema denticola/genetics , Animals , Chronic Periodontitis/microbiology , Gene Deletion , Genome, Bacterial/genetics , Humans , Locomotion/genetics , Locomotion/physiology , Microbial Interactions/physiology , Treponema denticola/growth & development , Treponema denticola/pathogenicity , Virulence Factors/genetics , Virulence Factors/metabolism , Whole Genome Sequencing
17.
J Proteome Res ; 17(8): 2803-2818, 2018 08 03.
Article in English | MEDLINE | ID: mdl-29984580

ABSTRACT

Porphyromonas gingivalis is a keystone periodontal pathogen that has been associated with autoimmune disorders. The cell surface proteases Lys-gingipain (Kgp) and Arg-gingipains (RgpA and RgpB) are major virulence factors, and their proteolytic activity is enhanced by small peptides such as glycylglycine (GlyGly). The reaction kinetics suggested that GlyGly may function as an acceptor molecule for gingipain-catalyzed transpeptidation. Purified gingipains and P. gingivalis whole cells were used to digest selected substrates including human hemoglobin in the presence or absence of peptide acceptors. Mass spectrometric analysis of the substrates digested with gingipains in the presence of GlyGly showed that transpeptidation outcompeted hydrolysis, whereas the trypsin-digested controls exhibited predominantly hydrolysis activity. The transpeptidation levels increased with increasing concentration of GlyGly. Purified gingipains and whole cells exhibited extensive transpeptidation activities on human hemoglobin. All hemoglobin cleavage sites were found to be suitable for GlyGly transpeptidation, and this transpeptidation enhanced hemoglobin digestion. The transpeptidation products were often more abundant than the corresponding hydrolysis products. In the absence of GlyGly, hemoglobin peptides produced during digestion were utilized as acceptors leading to the detection of up to 116 different transpeptidation products in a single reaction. P. gingivalis cells were able to digest hemoglobin faster when acceptor peptides derived from human serum albumin were included in the reaction, suggesting that gingipain-catalyzed transpeptidation may be relevant for substrates encountered in vivo. The transpeptidation of host proteins in vivo may potentially lead to the breakdown of immunological tolerance, culminating in autoimmune reactions.


Subject(s)
Adhesins, Bacterial/metabolism , Cysteine Endopeptidases/metabolism , Peptidyl Transferases/metabolism , Porphyromonas gingivalis/enzymology , Autoimmunity , Gingipain Cysteine Endopeptidases , Hemoglobins/metabolism , Humans , Proteolysis , Virulence Factors/metabolism
18.
J Proteome Res ; 17(7): 2377-2389, 2018 07 06.
Article in English | MEDLINE | ID: mdl-29766714

ABSTRACT

Porphyromonas gingivalis is an anaerobic, Gram-negative oral pathogen associated with chronic periodontitis. P. gingivalis has an obligate requirement for heme, which it obtains from the host. Heme availability has been linked to disease initiation and progression. In this study we used continuous culture of the bacterium to determine the effect of heme limitation and excess on the P. gingivalis proteome. Four biological replicates of whole cell lysate (WCL) and outer membrane vesicle (OMV) samples were digested with trypsin and analyzed by tandem mass spectrometry and MaxQuant label-free quantification. In total, 1211 proteins were quantified, with 108 and 49 proteins significantly changing in abundance more than 1.5-fold ( p < 0.05) in the WCLs and OMVs, respectively. The proteins most upregulated in response to heme limitation were those involved in binding and transporting heme, whereas the four proteins most upregulated under the heme-excess condition constitute a putative heme efflux system. In general, the protein abundance ratios obtained for OMVs and WCLs agreed, indicating that changes to the OM protein composition are passed onto OMVs; however, 16 proteins were preferentially packaged into OMVs under one condition more than the other. In particular, moonlighting cytoplasmic proteins were preferentially associated with OMVs under heme excess.


Subject(s)
Cell-Derived Microparticles/chemistry , Gene Expression Regulation, Bacterial/drug effects , Heme/pharmacology , Porphyromonas gingivalis/chemistry , Proteome/metabolism , Bacterial Outer Membrane Proteins , Cell-Derived Microparticles/drug effects , Heme/analysis , Porphyromonas gingivalis/cytology , Porphyromonas gingivalis/ultrastructure , Proteome/drug effects
19.
Front Microbiol ; 9: 230, 2018.
Article in English | MEDLINE | ID: mdl-29545777

ABSTRACT

Bacteroidetes feature prominently in the human microbiome, as major colonizers of the gut and clinically relevant pathogens elsewhere. Here, we reveal a new Bacteroidetes specific feature in the otherwise widely conserved Sec/SPI (Sec translocase/signal peptidase I) pathway. In Bacteroidetes, but not the entire FCB group or related phyla, signal peptide cleavage exposes N-terminal glutamine residues in most SPI substrates. Reanalysis of published mass spectrometry data for five Bacteroidetes species shows that the newly exposed glutamines are cyclized to pyroglutamate (also termed 5-oxoproline) residues. Using the dental pathogen Porphyromonas gingivalis as a model, we identify the PG2157 (also called PG_RS09565, Q7MT37) as the glutaminyl cyclase in this species, and map the catalytic activity to the periplasmic face of the inner membrane. Genetic manipulations that alter the glutamine residue immediately after the signal peptide in the pre-pro-forms of the gingipains affect the extracellular proteolytic activity of RgpA, but not RgpB and Kgp. Glutamine statistics, mass spectrometry data and the mutagenesis results show that the N-terminal glutamine residues or their pyroglutamate cyclization products do not act as generic sorting signals.

20.
Sci Rep ; 7(1): 8790, 2017 08 18.
Article in English | MEDLINE | ID: mdl-28821836

ABSTRACT

Porphyromonas gingivalis is a keystone pathogen associated with chronic periodontitis. Major virulence factors named gingipains (cysteine proteinases, RgpA, RgpB and Kgp) are secreted via the Type IX Secretion System (T9SS). These, together with approximately 30 other proteins, are secreted to the cell surface and anchored to the outer membrane by covalent modification to anionic lipopolysaccharide (A-LPS) via the novel Gram negative sortase, PorU. PorU is localised on the cell surface and cleaves the C-terminal domain signal (CTD) of T9SS substrates and conjugates their new C-termini to A-LPS. A 440 kDa-attachment complex was identified in the wild-type (WT) comprising of PorU:PorV:PorQ:PorZ. In mutant strains, sub-complexes comprising PorU:PorV or PorQ:PorZ were also identified at smaller native sizes suggesting that PorU and PorZ are anchored to the cell surface via interaction with the PorV and PorQ outer membrane proteins, respectively. Analysis of porU mutants and a CTD cleavage mutant revealed accumulation of immature T9SS substrates in a PorV-bound form. Quantitative label-free proteomics of WT whole cell lysates estimated that the proportion of secretion channels:attachment complexes:free PorV:T9SS substrates was 1:6:110:2000 supporting a role for PorV as a shuttle protein delivering secreted proteins to the attachment complex for CTD signal cleavage and A-LPS modification.


Subject(s)
Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Bacterial Secretion Systems , Porphyromonas gingivalis/physiology , Multiprotein Complexes/metabolism , Mutation , Protein Binding , Proteolysis , Proteome , Proteomics/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...