Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Environ Sci Technol Lett ; 10(8): 662-667, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37577362

ABSTRACT

Nonsenescent and senescent leaves of selected coniferous and broadleaf plants contained substantial levels of naturally occurring persistent free radicals (PFRs). These biogenic PFRs (BPFRs) were stable and persistent despite multiple wetting and drying cycles, implying that BPFRs can leach and sorb on soil particles. Results suggest that endogenous chemicals in plants and their transformation byproducts can stabilize unpaired electrons in leaves under ambient conditions. Thus, the vast amount and perpetual supply of leaf litter is an unaccounted natural source of BPFRs. If toxic, inhaling and accidentally ingesting fine soil dust and powder from degraded leaf litter may increase our environmental and health burdens to PFRs. We expect that this finding will generate more studies on natural sources of PFRs, establish their properties, and distinguish them from those formed from combustion and thermal processes.

2.
Int. microbiol ; 26(2): 379-387, May. 2023. ilus, graf
Article in English | IBECS | ID: ibc-220229

ABSTRACT

The COVID-19 pandemic involving SARS-CoV-2 has raised interest in using antimicrobial lipid formulations to inhibit viral entry into their host cells or to inactivate them. Lipids are a part of the innate defense mechanism against pathogens. Here, we evaluated the use of nano-monocaprin (NMC) in inhibiting enveloped (phi6) and unenveloped (MS2) bacteriophages. NMC was prepared using the sonochemistry technique. Size and morphology analysis revealed the formation of ~ 8.4 ± 0.2-nm NMC as measured by dynamic light scattering. We compared the antiviral activity of NMC with molecular monocaprin (MMC) at 0.5 mM and 2 mM concentrations against phi6, which we used as a surrogate for SARS-CoV-2. The synthesized NMC exhibited 50% higher antiviral activity against phi6 than MMC at pH 7 using plaque assay. NMC inactivated phi6 stronger at pH 4 than at pH 7. To determine if NMC is toxic to mammalian cells, we used MTS assay to assess its IC50 for HPDE and HeLa cell lines, which were ~ 203 and 221 µM, respectively. NMC may be used for prophylactic application either as a drop or spray since many viruses enter the human body through the mucosal lining of the nose, eyes, and lungs.(AU)


Subject(s)
Humans , Severe acute respiratory syndrome-related coronavirus , Pandemics , Bacteriophages , Lipids , Coronavirus Infections/epidemiology , Anti-Infective Agents , Microbiology , Microbiological Techniques
3.
Int Microbiol ; 26(2): 379-387, 2023 May.
Article in English | MEDLINE | ID: mdl-36422769

ABSTRACT

The COVID-19 pandemic involving SARS-CoV-2 has raised interest in using antimicrobial lipid formulations to inhibit viral entry into their host cells or to inactivate them. Lipids are a part of the innate defense mechanism against pathogens. Here, we evaluated the use of nano-monocaprin (NMC) in inhibiting enveloped (phi6) and unenveloped (MS2) bacteriophages. NMC was prepared using the sonochemistry technique. Size and morphology analysis revealed the formation of ~ 8.4 ± 0.2-nm NMC as measured by dynamic light scattering. We compared the antiviral activity of NMC with molecular monocaprin (MMC) at 0.5 mM and 2 mM concentrations against phi6, which we used as a surrogate for SARS-CoV-2. The synthesized NMC exhibited 50% higher antiviral activity against phi6 than MMC at pH 7 using plaque assay. NMC inactivated phi6 stronger at pH 4 than at pH 7. To determine if NMC is toxic to mammalian cells, we used MTS assay to assess its IC50 for HPDE and HeLa cell lines, which were ~ 203 and 221 µM, respectively. NMC may be used for prophylactic application either as a drop or spray since many viruses enter the human body through the mucosal lining of the nose, eyes, and lungs.


Subject(s)
Antiviral Agents , COVID-19 , Animals , Humans , Antiviral Agents/pharmacology , SARS-CoV-2 , HeLa Cells , Pandemics , Mammals
4.
Chemosphere ; 303(Pt 1): 134854, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35533943

ABSTRACT

Environmentally persistent free radicals (EPFRs) have been recognized as harmful and persistent environmental pollutants. In polluted regions, many acidic and basic atmospheric pollutants, which are present at high concentrations, may influence the extent of the formation of EPFRs. In the present paper, density functional theory (DFT) and ab-initio molecular dynamics (AIMD) calculations were performed to investigate the formation mechanisms of EPFRs with the influence of the acidic pollutants sulfuric acid (SA), nitric acid (NA), organic acid (OA), and the basic pollutants, ammonia (A), dimethylamine (DMA) on α-Al2O3 (0001) surface. Results indicate that both acidic and basic pollutants can enhance the formation of EPFRs by acting as "bridge" or "semi-bridge" roles by proceeding via a barrierless process. Acidic pollutants enhance the formation of EPFRs by first transferring its hydrogen atom to the α-Al2O3 surface and subsequently reacting with phenol to form an EPFR. In contrast, basic pollutants enhance the formation of EPFRs by first abstracting a hydrogen atom from phenol to form a phenoxy EPFR and eventually interacting with the α-Al2O3 surface. These new mechanistic insights will inform in understanding the abundant EPFRs in polluted regions with high mass concentrations of acidic and basic pollutants.


Subject(s)
Air Pollutants , Environmental Pollutants , Air Pollutants/analysis , Free Radicals/analysis , Hydrogen , Particulate Matter/analysis , Phenol
5.
Environ Sci Process Impacts ; 23(7): 947-955, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34100491

ABSTRACT

The gas-particle partitioning coefficients for volatile organic compounds (VOCs) are difficult to acquire because discriminating the small mass fraction of the VOCs in the aerosol particle relative to that in the gas phase is challenging. In this paper, we report the temperature dependence of the gas-particle partitioning coefficient (Kp) for n-butanol (n-BuOH) and trichloroethylene (TCE). Using the bench-scale system that we developed, we measured the Kp of surrogate VOCs, n-BuOH, and TCE onto inorganic (ammonium sulfate, Am Sulf) and organic (succinic acid, SA) aerosol particles at a fixed relative humidity (RH) of 35%. At this RH level and temperature range of 278.15-308.15 K, the ln Kp for TCE and n-BuOH partitioning on SA aerosol particles were -27.0 ± 0.70 to -27.9 ± 0.01 and -13.9 ± 0.03 to -17.4 ± 0.17. In contrast, the ln Kp for TCE and n-BuOH partitioning on Am Sulf aerosol particles ranged from -26.4 ± 0.70 to -27.4 ± 0.71 and -14.1 ± 0.03 to -17.1 ± 0.17, respectively. Results showed that TCE fitted well with the classic van't Hoff relationship. The enthalpy of desorption (ΔHdes) for TCE was constant over the temperature range of 278.15 K to 308.15 K, behaving similarly to 1,2-dichlorobenzene. At a similar temperature range, n-BuOH partitioning into both aerosol particles exhibited nonlinear temperature dependence. The minimum ratio of ΔHdes (Am Sulf:SA) for n-BuOH partitioning on each aerosol type was at ∼278.15 K. The magnitude of the entropy ΔSdes for all VOCs was <1 kJ mol-1.


Subject(s)
Trichloroethylene , Volatile Organic Compounds , Aerosols , Gases , Temperature
6.
Front Chem ; 9: 687660, 2021.
Article in English | MEDLINE | ID: mdl-34055750

ABSTRACT

One primary mechanism for bacteria developing resistance is frequent exposure to antibiotics. Nanoantibiotics (nAbts) is one of the strategies being explored to counteract the surge of antibiotic resistant bacteria. nAbts are antibiotic molecules encapsulated with engineered nanoparticles (NPs) or artificially synthesized pure antibiotics with a size range of ≤100 nm in at least one dimension. NPs may restore drug efficacy because of their nanoscale functionalities. As carriers and delivery agents, nAbts can reach target sites inside a bacterium by crossing the cell membrane, interfering with cellular components, and damaging metabolic machinery. Nanoscale systems deliver antibiotics at enormous particle number concentrations. The unique size-, shape-, and composition-related properties of nAbts pose multiple simultaneous assaults on bacteria. Resistance of bacteria toward diverse nanoscale conjugates is considerably slower because NPs generate non-biological adverse effects. NPs physically break down bacteria and interfere with critical molecules used in bacterial processes. Genetic mutations from abiotic assault exerted by nAbts are less probable. This paper discusses how to exploit the fundamental physical and chemical properties of NPs to restore the efficacy of conventional antibiotics. We first described the concept of nAbts and explained their importance. We then summarized the critical physicochemical properties of nAbts that can be utilized in manufacturing and designing various nAbts types. nAbts epitomize a potential Trojan horse strategy to circumvent antibiotic resistance mechanisms. The availability of diverse types and multiple targets of nAbts is increasing due to advances in nanotechnology. Studying nanoscale functions and properties may provide an understanding in preventing future outbreaks caused by antibiotic resistance and in developing successful nAbts.

7.
MethodsX ; 7: 101041, 2020.
Article in English | MEDLINE | ID: mdl-32939351

ABSTRACT

The partitioning behavior of volatile organic compounds (VOCs) into nanoparticles is less studied compared to those of semivolatile organic compounds (SVOCs) because of the lower concentration of the VOCs that is expected to partition into particles. One challenge in measuring the accurate partition coefficient of VOCs is quantifying their low mass fraction that sorbed on nanoparticles and differentiating them from the high VOC concentrations present in the gas-phase. Systematically characterizing the partitioning coefficient at a specific environmental condition is also difficult when sampling in the field. During field sampling, thermal and non-thermal issues such as sampling artifacts and non-equilibrium conditions because of a dynamic environment often result in considerable variability in the measured partition coefficients. In this study, we developed a bench-scale system that can achieve precise control of the experimental condition (e.g., relative humidity, temperature, and particle composition) and allow us to measure the low concentration of 1,2-dichlorobenzene in the particles. A similar set up can be used to study the low mass fraction of other VOCs partitioning in nanoparticles. The detailed but uncomplicated system setup may assist other researchers that investigate the global fate and transport and health effects of VOCs.•A bench-scale system was built in the laboratory to study the gas-to-particle partitioning•Experimental conditions can be controlled and easily varied•The system enables the systematic study of a single environmental factor on the partitioning process.

8.
Chemosphere ; 212: 282-296, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30145420

ABSTRACT

Although volatile organic compounds (VOCs) exist mainly in the gas-phase rather than in aerosols, the concentrations of VOCs measured from aerosols are comparable to those of semi-volatile organic compounds, which preferentially partition into aerosols. VOCs that partition into aerosols may raise health effects that are generally not exerted by aerosols or by VOCs alone. So far, only scant reports on VOC/aerosol partitioning are available in the extant literature. In this review, we discuss findings presented in recent studies on the partition mechanism, factors affecting the partition process, existing knowledge gaps, and recommendations to help address these gaps for future research. Also, we have surveyed the different models that can be applied to predict partition coefficients and the inherent advantage and shortcoming of the assumptions in these models. A better understanding of the partition mechanism and partition coefficient of VOCs into aerosols can improve prediction of the global fate and transport of VOCs in the environment and enhance assessment of the health effects from exposure to VOCs.


Subject(s)
Volatile Organic Compounds/chemistry , Aerosols , Environment , Models, Chemical
9.
Proc Natl Acad Sci U S A ; 115(28): 7272-7277, 2018 07 10.
Article in English | MEDLINE | ID: mdl-29941550

ABSTRACT

Suspended aqueous aerosol droplets (<50 µm) are microreactors for many important atmospheric reactions. In droplets and other aquatic environments, pH is arguably the key parameter dictating chemical and biological processes. The nature of the droplet air/water interface has the potential to significantly alter droplet pH relative to bulk water. Historically, it has been challenging to measure the pH of individual droplets because of their inaccessibility to conventional pH probes. In this study, we scanned droplets containing 4-mercaptobenzoic acid-functionalized gold nanoparticle pH nanoprobes by 2D and 3D laser confocal Raman microscopy. Using surface-enhanced Raman scattering, we acquired the pH distribution inside approximately 20-µm-diameter phosphate-buffered aerosol droplets and found that the pH in the core of a droplet is higher than that of bulk solution by up to 3.6 pH units. This finding suggests the accumulation of protons at the air/water interface and is consistent with recent thermodynamic model results. The existence of this pH shift was corroborated by the observation that a catalytic reaction that occurs only under basic conditions (i.e., dimerization of 4-aminothiophenol to produce dimercaptoazobenzene) occurs within the high pH core of a droplet, but not in bulk solution. Our nanoparticle probe enables pH quantification through the cross-section of an aerosol droplet, revealing a spatial gradient that has implications for acid-base-catalyzed atmospheric chemistry.


Subject(s)
Benzoates/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Sulfhydryl Compounds/chemistry , Aerosols , Catalysis , Hydrogen-Ion Concentration
10.
J Infect Dis ; 218(5): 739-747, 2018 07 24.
Article in English | MEDLINE | ID: mdl-29878137

ABSTRACT

Pandemic and seasonal influenza viruses can be transmitted through aerosols and droplets, in which viruses must remain stable and infectious across a wide range of environmental conditions. Using humidity-controlled chambers, we studied the impact of relative humidity on the stability of 2009 pandemic influenza A(H1N1) virus in suspended aerosols and stationary droplets. Contrary to the prevailing paradigm that humidity modulates the stability of respiratory viruses in aerosols, we found that viruses supplemented with material from the apical surface of differentiated primary human airway epithelial cells remained equally infectious for 1 hour at all relative humidities tested. This sustained infectivity was observed in both fine aerosols and stationary droplets. Our data suggest, for the first time, that influenza viruses remain highly stable and infectious in aerosols across a wide range of relative humidities. These results have significant implications for understanding the mechanisms of transmission of influenza and its seasonality.


Subject(s)
Aerosols , Humidity , Influenza A Virus, H1N1 Subtype/physiology , Microbial Viability , Cells, Cultured , Environmental Exposure , Epithelial Cells/virology , Humans , Time Factors
11.
J R Soc Interface ; 15(139)2018 02.
Article in English | MEDLINE | ID: mdl-29491178

ABSTRACT

The detailed physico-chemical characteristics of respiratory droplets in ambient air, where they are subject to evaporation, are poorly understood. Changes in the concentration and phase of major components in a droplet-salt (NaCl), protein (mucin) and surfactant (dipalmitoylphosphatidylcholine)-may affect the viability of any pathogens contained within it and thus may affect the efficiency of transmission of infectious disease by droplets and aerosols. The objective of this study is to investigate the effect of relative humidity (RH) on the physico-chemical characteristics of evaporating droplets of model respiratory fluids. We labelled these components in model respiratory fluids and observed evaporating droplets suspended on a superhydrophobic surface using optical and fluorescence microscopy. When exposed to continuously decreasing RH, droplets of different model respiratory fluids assumed different morphologies. Loss of water induced phase separation as well as indication of a decrease in pH. The presence of surfactant inhibited the rapid rehydration of the non-volatile components. An enveloped virus, ϕ6, that has been proposed as a surrogate for influenza virus appeared to be homogeneously distributed throughout the dried droplet. We hypothesize that the increasing acidity and salinity in evaporating respiratory droplets may affect the structure of the virus, although at low enough RH, crystallization of the droplet components may eliminate their harmful effects.


Subject(s)
Exhalation , Models, Chemical , Sodium Chloride/chemistry , Water/chemistry , Aerosols/chemistry , Humans
12.
Environ Sci Technol ; 52(5): 2468-2481, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29443514

ABSTRACT

Environmentally persistent free radicals, EPFRs, exist in significant concentration in atmospheric particulate matter (PM). EPFRs are primarily emitted from combustion and thermal processing of organic materials, in which the organic combustion byproducts interact with transition metal-containing particles to form a free radical-particle pollutant. While the existence of persistent free radicals in combustion has been known for over half-a-century, only recently that their presence in environmental matrices and health effects have started significant research, but still in its infancy. Most of the experimental studies conducted to understand the origin and nature of EPFRs have focused primarily on nanoparticles that are supported on a larger micrometer-sized particle that mimics incidental nanoparticles formed during combustion. Less is known on the extent by which EPFRs may form on engineered nanomaterials (ENMs) during combustion or thermal treatment. In this critical and timely review, we summarize important findings on EPFRs and discuss their potential to form on pristine ENMs as a new research direction. ENMs may form EPFRs that may differ in type and concentration compared to nanoparticles that are supported on larger particles. The lack of basic data and fundamental knowledge about the interaction of combustion byproducts with ENMs under high-temperature and oxidative conditions present an unknown environmental and health burden. Studying the extent of ENMs on catalyzing EPFRs is important to address the hazards of atmospheric PM fully from these emerging environmental contaminants.


Subject(s)
Air Pollutants , Environmental Pollutants , Free Radicals , Oxidation-Reduction , Particulate Matter
13.
Environ Sci Technol ; 52(6): 3583-3590, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29446939

ABSTRACT

The particle/gas partition coefficient Kp is an important parameter affecting the fate and transport of indoor semivolatile organic compounds (SVOCs) and resulting human exposure. Unfortunately, experimental measurements of Kp exist almost exclusively for atmospheric polycyclic aromatic hydrocarbons, with very few studies focusing on SVOCs that occur in indoor environments. A specially designed tube chamber operating in the laminar flow regime was developed to measure Kp of the plasticizer di-2-ethylhexyl phthalate (DEHP) for one inorganic (ammonium sulfate) and two organic (oleic acid and squalane) particles. The values of Kp for the organic particles (0.23 ± 0.13 m3/µg for oleic acid and 0.11 ± 0.10 m3/µg for squalane) are an order of magnitude higher than those for the inorganic particles (0.011 ± 0.004 m3/µg), suggesting that the process by which the particles accumulate SVOCs is different. A mechanistic model based on the experimental design reveals that the presence of the particles increases the gas-phase concentration gradient in the boundary layer, resulting in enhanced mass transfer from the emission source into the air. This novel approach provides new insight into experimental designs for rapid Kp measurement and a sound basis for investigating particle-mediated mass transfer of SVOCs.


Subject(s)
Air Pollution, Indoor , Diethylhexyl Phthalate , Phthalic Acids , Humans , Plasticizers
14.
Beilstein J Nanotechnol ; 6: 1769-80, 2015.
Article in English | MEDLINE | ID: mdl-26425429

ABSTRACT

To document the marketing and distribution of nano-enabled products into the commercial marketplace, the Woodrow Wilson International Center for Scholars and the Project on Emerging Nanotechnologies created the Nanotechnology Consumer Products Inventory (CPI) in 2005. The objective of this present work is to redevelop the CPI by leading a research effort to increase the usefulness and reliability of this inventory. We created eight new descriptors for consumer products, including information pertaining to the nanomaterials contained in each product. The project was motivated by the recognition that a diverse group of stakeholders from academia, industry, and state/federal government had become highly dependent on the inventory as an important resource and bellweather of the pervasiveness of nanotechnology in society. We interviewed 68 nanotechnology experts to assess key information needs. Their answers guided inventory modifications by providing a clear conceptual framework best suited for user expectations. The revised inventory was released in October 2013. It currently lists 1814 consumer products from 622 companies in 32 countries. The Health and Fitness category contains the most products (762, or 42% of the total). Silver is the most frequently used nanomaterial (435 products, or 24%); however, 49% of the products (889) included in the CPI do not provide the composition of the nanomaterial used in them. About 29% of the CPI (528 products) contain nanomaterials suspended in a variety of liquid media and dermal contact is the most likely exposure scenario from their use. The majority (1288 products, or 71%) of the products do not present enough supporting information to corroborate the claim that nanomaterials are used. The modified CPI has enabled crowdsourcing capabilities, which allow users to suggest edits to any entry and permits researchers to upload new findings ranging from human and environmental exposure data to complete life cycle assessments. There are inherent limitations to this type of database, but these modifications to the inventory addressed the majority of criticisms raised in published literature and in surveys of nanotechnology stakeholders and experts. The development of standardized methods and metrics for nanomaterial characterization and labelling in consumer products can lead to greater understanding between the key stakeholders in nanotechnology, especially consumers, researchers, regulators, and industry.

15.
Water Res ; 68: 87-97, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25462719

ABSTRACT

As nanomaterials in consumer products increasingly enter wastewater treatment plants, there is concern that they may have adverse effects on biological wastewater treatment. Effects of silver (nanoAg), zero-valent iron (NZVI), titanium dioxide (nanoTiO2) and cerium dioxide (nanoCeO2) nanomaterials on nitrification and microbial community structure were examined in duplicate lab-scale nitrifying sequencing batch reactors (SBRs) relative to control SBRs that received no nanomaterials or ionic/bulk analogs. Nitrification function was not measurably inhibited in the SBRs by any of the materials as dosing was initiated at 0.1 mg/L and sequentially increased every 14 days to 1, 10, and 20 mg/L. However, SBRs rapidly lost nitrification function when the Ag⁺ experiment was repeated at a continuous high load of 20 mg/L. Shifts in microbial community structure and decreased microbial diversity were associated with both sequential and high loading of nanoAg and Ag⁺, with more pronounced effects for Ag⁺. Bacteroidetes became more dominant in SBRs dosed with Ag⁺, while Proteobacteria became more dominant in SBRs dosed with nanoAg. The two forms of silver also had distinct effects on specific bacterial genera. A decrease in nitrification gene markers (amoA) was observed in SBRs dosed with nanoAg and Ag⁺. In contrast, impacts of NZVI, nanoTiO2, nanoCeO2 and their analogs on microbial community structure and nitrification gene markers were limited. TEM-EDS analysis indicated that a large portion of nanoAg remained dispersed in the activated sludge and formed Ag­S complexes, while NZVI, nanoTiO2 and nanoCeO2 were mostly aggregated and chemically unmodified. Overall, this study suggests a high threshold of the four nanomaterials in terms of exerting adverse effects on nitrification function. However, distinct microbial community responses to nanoAg indicate potential long-term effects.


Subject(s)
Bacteria/drug effects , Metal Nanoparticles/toxicity , Sewage/analysis , Waste Disposal, Fluid , Wastewater/toxicity , Water Pollutants, Chemical/toxicity , Bioreactors/microbiology , Microscopy, Electron, Transmission , Nitrification , Spectrometry, X-Ray Emission
16.
Environ Sci Technol ; 48(5): 2706-14, 2014.
Article in English | MEDLINE | ID: mdl-24517376

ABSTRACT

Atmospheric processing of carbonaceous nanoparticles (CNPs) may play an important role in determining their fate and environmental impacts. This work investigates the reaction between aerosolized C60 and atmospherically relevant mixing ratios of O3 at differing levels of humidity. Results indicate that C60 is oxidized by O3 and forms a variety of oxygen-containing functional groups on the aerosol surface, including C60O, C60O2, and C60O3. The pseudo-first-order reaction rate between C60 and O3 ranges from 9 × 10(-6) to 2 × 10(-5) s(-1). The reaction is likely to be limited to the aerosol surface. Exposure to O3 increases the oxidative stress exerted by the C60 aerosols as measured by the dichlorofluorescein acellular assay but not by the uric acid, ascorbic acid, glutathione, or dithiothreitol assays. The initial prevalence of C60O and C60O2 as intermediate products is enhanced at higher humidity, as is the surface oxygen content of the aerosols. These results show that C60 can be oxidized when exposed to O3 under ambient conditions, such as those found in environmental, laboratory, and industrial settings.


Subject(s)
Aerosols/chemistry , Fullerenes/chemistry , Ozone/chemistry , Ascorbic Acid/chemistry , Chemistry Techniques, Analytical , Fluoresceins/chemistry , Glutathione/chemistry , Humidity , Oxidation-Reduction , Oxygen
17.
Toxicol Rep ; 1: 871-876, 2014.
Article in English | MEDLINE | ID: mdl-28962298

ABSTRACT

Here we characterize the toxicity of environmentally-relevant forms of engineered nanomaterials (ENMs), which can transform during wastewater treatment and persist in aqueous effluents and biosolids. In an aerosol exposure scenario, cytotoxicity and genotoxicity of effluents and biosolids from lab-scale sequencing batch reactors (SBRs) to A549 human lung epithelial cells were examined. The SBRs were dosed with nanoAg, nano zero-valent iron (NZVI), nanoTiO2 and nanoCeO2 at sequentially increasing concentrations from 0.1 to 20 mg/L. Toxicities were compared to outputs from SBRs dosed with ionic/bulk analogs, undosed SBRs, and pristine ENMs. Pristine nanoAg and NZVI showed significant cytotoxicity to A549 cells in a dose-dependent manner from 1 to 67 µg/mL, while nanoTiO2 and nanoCeO2 only exerted cytotoxicity at 67 µg/mL. Only nanoAg induced a genotoxic response, at 9, 33 and 53 µg/mL. However, no significant cytotoxic or genotoxic effects of the SBR effluents or biosolids containing nanomaterials were observed.

18.
Environ Sci Process Impacts ; 15(9): 1652-64, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23880913

ABSTRACT

As nanotechnology-based products enter into widespread use, nanomaterials will end up in disposal waste streams that are ultimately discharged to the environment. One possible end-of-life scenario is incineration. This review attempts to ascertain the potential pathways by which nanomaterials may enter incinerator waste streams and the fate of these nanomaterials during the incineration process. Although the literature on incineration of nanomaterials is scarce, results from studies of their behavior at high temperature or in combustion environments for other applications can help predict their fate within an incinerator. Preliminary evidence suggests nanomaterials may catalyze the formation or destruction of combustion by-products. Depending on their composition, nanomaterials may undergo physical and chemical transformations within the incinerator, impacting their partitioning within the incineration system (e.g., bottom ash, fly ash) and the effectiveness of control technology for removing them. These transformations may also drastically affect nanomaterial transport and impacts in the environment. Current regulations on incinerator emissions do not specifically address nanomaterials, but limits on particle and metal emissions may prove somewhat effective at reducing the release of nanomaterials in incinerator effluent. Control technology used to meet these regulations, such as fabric filters, electrostatic precipitators, and wet electrostatic scrubbers, are expected to be at least partially effective at removing nanomaterials from incinerator flue gas.


Subject(s)
Environmental Pollutants/chemistry , Incineration/methods , Nanostructures/chemistry , Waste Management/methods , Environment , Equipment Design , Incineration/instrumentation , Waste Management/instrumentation
19.
Environ Sci Technol ; 47(9): 4866-74, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23528156

ABSTRACT

Disposal of some nanomaterial-laden waste through incineration is inevitable, and nanomaterials' influence on combustion byproduct formation under high-temperature, oxidative conditions is not well understood. This work reports the formation of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated-dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from incineration of paper and plastic waste containing various nanomaterials, including titania, nickel oxide, silver, ceria, iron oxide, quantum dots, and C60-fullerene, in a laboratory-scale furnace. The presence of nanomaterials in the waste stream resulted in higher emissions of some PAH species and lower emissions of others, depending on the type of waste. The major PAH species formed were phenanthrene and anthracene, and emissions were sensitive to the amount of nanomaterials in the waste. Generally, there were no significant differences in emission factors for the larger PAH species when nanomaterials were added to the waste. The total PAH emission factors were on average ~6 times higher for waste spiked with nanomaterials v. their bulk counterparts. Emissions of chlorinated dioxins from poly(vinyl chloride) (PVC) waste were not detected; however, chlorinated furans were formed at elevated concentrations with wastes containing silver and titania nanomaterials, and toxicity was attributable mainly to 2,3,4,7,8-pentachlorodibenzofuran. The combination of high specific surface area and catalytic, including electrocatalytic, properties of nanomaterials might be responsible for affecting the formation of toxic pollutants during incineration.


Subject(s)
Benzofurans/analysis , Incineration , Nanostructures , Polychlorinated Dibenzodioxins/analogs & derivatives , Polycyclic Aromatic Hydrocarbons/analysis , Dibenzofurans, Polychlorinated , Polychlorinated Dibenzodioxins/analysis
20.
J Environ Monit ; 14(10): 2803-6, 2012 Oct 26.
Article in English | MEDLINE | ID: mdl-22990982

ABSTRACT

Previous studies indicated that Environmentally Persistent Free Radicals (EPFRs) are formed in the post-flame, cool zone of combustion. They result from the chemisorption of gas-phase products of incomplete combustion (particularly hydroxyl- and chlorine-substituted aromatics) on Cu(II)O, Fe(III)(2)O(3), and Ni(II)O domains of particulate matter (fly ash or soot particles). This study reports our detailed laboratory investigation on the lifetime of EPFRs on Zn(II)O/silica surface. Similarly, as in the case of other transition metals, chemisorption of the adsorbate on the Zn(II)O surface and subsequent transfer of electron from the adsorbate to the metal forms a surface-bound EPFR and a reduced metal ion center. The EPFRs are stabilized by their interaction with the metal oxide domain surface. The half-lives of EPFRs formed on Zn(II)O domains were the longest observed among the transition metal oxides studied and ranged from 3 to 73 days. These half-lives were an order of magnitude longer than those formed on nickel and iron oxides, and were 2 orders of magnitude longer compared to the EPFRs on copper oxide which have half-lives only on the order of hours. The longest-lived radicals on Zn(II)O correspond to the persistency in ambient air particles of almost a year. The half-life of EPFRs was found to correlate with the standard reduction potential of the associated metal.


Subject(s)
Free Radicals/analysis , Metals/analysis , Air Pollutants/analysis , Air Pollutants/chemistry , Free Radicals/chemistry , Heating , Incineration , Metals/chemistry , Models, Chemical , Oxides/analysis , Oxides/chemistry , Zinc Oxide/analysis , Zinc Oxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...